
Design Guidelines for System Administration Tools
Developed through Ethnographic Field Studies

Eben M. Haber, John Bailey
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

+1 408 927 1224

{ehaber, baileyj}@us.ibm.com

ABSTRACT
Information Technology system administrators (sysadmins)
perform the crucial and never-ending work of maintaining the
technical infrastructure on which our society depends. Computer
systems grow more complex every year, however, and the cost of
administration is an ever increasing fraction of total system cost –
IT systems are growing harder to manage. To better understand
this problem, we undertook a series of field studies of system
administration work over the past four years, visiting a variety of
enterprise and large university sites. One of our most compelling
observations was how often the tools used by system
administrators were not well aligned with their work practices.
We believe that this misalignment was the result of administration
tools designed without a complete understanding of the full
context of administration work. To promote the design of better
tools, this paper describes system administration work in more
detail based on examples from our field studies, outlines the
dimensions along which enterprise sysadmins differ significantly
from other computer users, and provides a set of guidelines for
tools to better support how administrators actually work.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Evaluation/methodology, interaction
styles, style guides, user-centered design, K.6.4 [Systems
Management].

General Terms
Management, Design, Human Factors.

Keywords
Ethnography, Design Guidelines, System Administration

1. INTRODUCTION
Information Technology (IT) System Administrators are the
linchpin of modern civilization - without their diligent and never-
ending work, the technological infrastructure on which we all

depend would quickly fall to pieces. As IT systems grow more
complex, however, the cost of management has grown to
dominate the total system cost [10]. A system with twice as many
components can require considerably more than twice the
administrative work to account for all the possible interactions
[17]. Furthermore, expensive system failures are often attributed
to human error [14]. Despite the cost and importance of
administration work, little was known about system
administrators, spurring us to undertake a series of ethnographic
field studies examining sysadmin needs and work practices.

Over the past four years, we made 16 visits across six sites,
studying administrators involved in managing web hosting,
databases, operating systems, storage, computer security, and data
center operations. Our primary approach has been naturalistic
observation of administrators at work (usually recorded on
videotape), along with interviews, surveys, and collection of
various artifacts (diaries, instructions, planning documents, etc.).
Ethnographic field studies provide an extremely detailed and
accurate picture of what administrators actually do. We've found
that administrators' own reports of their activities don't always
correspond with what we observed and videotaped - people
sometimes don’t realize where their time and effort are spent.
There are disadvantages to field studies, however: they are
extremely time and labor intensive, resulting in a small population
and temporal sample (more than once we heard, "you should have
been here last week"). It should also be noted that we studied
administrators in enterprise/large university settings, and that
differences will exist between the work of these administrators
and those working in small business or academic environments.

Some of our findings have been reported elsewhere, including a
detailed study of troubleshooting activity [13], a discussion of
computer security administration [11], and a more general
analysis of administration tool use and work practices [3]. Our
field studies also informed the development of A1/ATMA, a
prototype environment to help administrators create and share
small tools that automate tasks and perform monitoring [7][12].
Other studies of administration work are few, the most notable
exceptions include studies of tasks and tools [1], workflow and
daily activities [5],[9], and coordinated activity [15].

One of the most striking things we observed in our field studies
were the cases where administration tools were not well aligned
with administrator work practices. As described in [3], we saw
many examples where tools failed to support the administrators'
activities, forcing them to use clumsy workarounds or self-created
tools. Worse, we saw cases where the tools functioned in ways

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHIMIT’07, March 30–31, 2007, Cambridge, MA, U.S.A.
Copyright 2007 ACM 1-59593-635-6/07/0003…$5.00.

that actually caused problems or significantly lengthened problem
resolution. This is not to say that existing tools are completely
broken, every day administrators do successfully perform
complex operations on complex systems. Yet we witnessed
enough problems to believe that administration tools are often
created without sufficient understanding of the full context of
administration work. Even when administration tools are created
using a good User-Centered Design process, it is possible to focus
too much on the interaction between a single user and a single
tool without taking into account how the user works with other
users, how the user works with other tools, and how the different
tools interact. It seems that many tools are designed to support
individual tasks (which they often do well) without considering
broader processes and interactions inherent in system admin-
istration. This paper describes the context of administration,
illustrated with examples from our field studies, and develops a
set of guidelines for tools that better support the way
administrators work in the real world. It begins with series of
profiles of system administrators from different technical areas,
describing their typical day-to-day tools and activities. The next
section describes important dimensions along which sysadmins
are notably different from other computer users, and lists some of
the resulting work practices. The final section describes a set of
design guidelines to help administrative tools better support
sysadmin work practices, with some real-world examples of what
can happen then the guidelines are not followed.

2. PROFILES
The following profiles are based on real administrators whom we
observed, though the names have been changed and some
personal details combined to preserve anonymity. Their stories
illustrate the range system administration tasks and work
environments.

2.1 Christine - A Database Administrator
Christine is a database administrator for a computer services
company, managing client databases as part of outsourcing
contracts. The databases are critical to the customers’ business
operations, and Service Level Agreements (SLAs) exist with
strong penalties for system unavailability outside of “change
windows” (periods of time set aside for maintenance).
Unexpected downtime for longer than permitted by the SLA
results in lengthy and tedious root-cause-analysis meetings, and
permanent loss of data is considered absolutely unacceptable.
Responsibility for different system components is distributed at
Christine’s site: while she is responsible for databases, other
administrators are in charge of the hardware and operating
systems on which the databases run. This sometimes leads to
disagreements between administrators, such as whether solving a
problem requires the computer to be restarted, or just the
database. Occasionally the disagreements are sufficiently heated
as to require management intervention to resolve.

There are two major components to Christine’s work: regular
monitoring/troubleshooting, and performing database changes.
Monitoring is a continual process of using various tools to ensure
that the database is operating correctly and efficiently. These tools
might indicate suboptimal performance, leading Christine to
investigate possible database changes to alleviate the situation.
Unlike ad hoc monitoring, the process of making database

changes is highly regulated and regimented. Changes must be
approved ahead of time, and must be tested on three increasingly
realistic test systems before implementation on the production
system, and even then changes can only occur during a specific,
customer-approved time window. Christine might spend as much
as a week writing scripts and practicing various aspects of a
change to make sure that the change process is well understood
and that the implementation time window is reasonable.

Christine uses a variety of tools for her work, including email,
instant messaging (IM), spreadsheets (e.g., holding collected
performance data), and terminal windows to remote machines.
She also uses several locally-created web-based tools that perform
functions such as monitoring database statistics, and managing the
database change process (describing, justifying, and planning the
change, and getting approval from all necessary parties). She
always uses a command-line interface (CLI) and scripts for
performing commands in the database, as existing GUIs don’t
scale sufficiently to handle the 25,000 tables in the database she
manages. Each database table has an eight letter name, leading to
many similarly named tables, so she never types a table name
directly. Instead she always copies and pastes table names from
task instructions to her CLI or script. The CLI is not without
faults, for example we witnessed an episode where she
accidentally stopped the wrong database process. When selecting
a database process ID from a list in the CLI window, each line of
the list wrapped around several times. She picked the process ID
from the wrong line (Figure 1). For other examples of CLI/script
limitations from the same site, see sections 4.2 and 4.3 of [3].

Figure 1. Christine looking through the command line listing to

find the ID number of a database process to that must be stopped.

A typical day for Christine involves a mix of activities. She is in
frequent contact with her coworkers via phone, e-mail and IM
discussing current system status and planning future changes. She
also regularly monitors database operation and performance
through web and command-line tools. Sometimes her pager goes
off when the customer (or one of the other DBAs) notices a
problem, and she might need to put everything else aside until it is
resolved. At the same time, a significant portion of her day is
spent preparing for the next database change. She might be
working on as few as 1-2 changes in a given month, or as many
one change per week. The change window is usually on the

weekend, so she’ll spend much of the week before checking
commands, building scripts, and testing each step of the change
process on test systems. For critical operations, we saw her spend
much of the day working side-by-side with a more experienced
database administrator. At some points this appeared to be a way
for her to learn about unfamiliar tasks, but at other points the two
were on a more equal footing, each contributing knowledge of
configuration and past system behavior, and each checking the
actions of the other before proceeding. At especially risky
junctures, such as entering a command that could damage the
system if done incorrectly, they would go back and forth several
times, asking each other, “are you sure?” Only once both were
satisfied would they go ahead.

2.2 Bill - A Web Administrator
Bill is a system administrator for a large computing company,
working to maintain their corporate web infrastructure. He started
his career as a mail server administrator, but got bored and
transitioned to a group doing both web and mail. Bill is one of the
more junior administrators in a group of 12. He was mentored in
web management by Nate, a more senior member of the group,
and learned enough to make it his primary focus. Bill still
interacts frequently with Nate when he has questions or is
involved in particularly difficult operations.

The focus of Bill’s job is deploying new web applications (or new
versions of existing applications) onto the corporate web
application servers. The process of web application deployment
can be very lengthy, involving extensive planning and
implementation. Planning all the timing, steps, and dependencies
requires the majority of the time, but even implementation can be
time consuming. For example, Bill’s most complex application
requires 300 to 400 steps to deploy, and his simpler web apps
need 20 to 40 steps. In the ideal world, this would take all his
time, but in reality he has to troubleshoot when applications fail
or don’t work as expected. He is also responsible for monitoring
certain aspects of the underlying infrastructure (databases,
operating systems, and hardware), to make sure that changes
(such as new database versions) don’t adversely impact web
applications. Bill is the primary administrator in charge of all
deployments and troubleshooting for four applications, and is
backup administrator for another four. Once or twice per year he
gets pulled into a “crit sit”, a critical situation where the users of
an application are sufficiently unhappy that all responsible
administrators (web, database, operating system, network, etc.)
are brought into a single room to work together to find and fix the
underlying problem. These crit sits can last days, weeks, or even
months in the most difficult cases.

Bill’s environment is divided into a test area and production area,
with all applications initially deployed into the test area.
Modifications to applications in the production area are only
permitted during change windows: minor changes can be made in
the evening, more significant changes must wait for the weekend.
Locally developed tools exist to help move an application from
the test to production areas, but much of the process must still be
done by hand.

Bill uses a variety of tools in his work. As with Christine, Bill
uses e-mail and IM extensively to communicate with coworkers
about system state, and for discussing and planning deployments.
IM and phone are the primary tools used during troubleshooting,

given the need for immediate responses. He uses a GUI
administrative console for monitoring the status of his web
applications, but also uses a variety of command-line tools as part
of deployments. For command-line work, he keeps of file called
“Useful Commands” containing examples of the correct syntax
for a number of useful but tricky operations. When preparing for a
deployment, he fills a text file with the commands he will need to
run, using it as an informal script to reduce typing and sequencing
errors during the change window (Figure 2).

Figure 2. During a deployment, Bill copies commands prepared
earlier from a text file (bottom) to the command window (top).

2.3 Aaron - A Security Administrator
Aaron is a security administrator at a large university. Working
with his manager and two other security administrators, they are
responsible for detecting and eliminating hostile intrusions into
any of the several hundred computers in his department (this work
is discussed at length in [11]). They also monitor network traffic
to ensure that computer use follows established guidelines in
areas such as file sharing, downloading of pornography, etc. The
department is regularly under attack by “crackers”, in part due to
its prestige, and also due to its exceptionally heterogeneous
installed base of computers, with many hardware vendors,
operating systems, software packages and versions. Aaron’s
group tries to stay abreast of the most recently discovered
vulnerabilities, updating exploitable machines before they’re
attacked. They also perform extensive network monitoring to find
and isolate machines under attack, often trying to track attacks
back to their source.

Aaron uses a variety of network and computer monitoring tools,
most of them CLI-based. Some are running constantly, sending
him e-mail when suspicious activity is detected, and others
perform specific scans on demand. Alerts come in to his e-mail
box constantly, so he checks e-mail every few minutes to evaluate
them. Most can be ignored based on his knowledge of the systems
involved, though sometimes he will investigate further, going as
far as to look up or contact the owner of a machine to determine if
certain activity is legitimate. Aaron often creates ad hoc
command-line analysis tools (using awk, grep, etc.) for processing
the monitoring tool output into more comprehensible forms
(Figure 3). Aaron also spends considerable time using a multi-
room multi-user chat environment (the “moo”) where

administrators across the university discuss both work and non-
work topics. The security “room” of the “moo” has frequent
interchanges between Aaron and his fellow security admins
discussing issues such as whether certain network activities are
suspicious or not.

Figure 3. In one of Aaron’s many command line windows, he

creates ad hoc data processing tools with awk, grep, etc.

A typical day for Aaron consists of alternating between long term
tasks, learning, and monitoring/troubleshooting. He monitors the
“moo” and his e-mail, responding when necessary to reports of
suspicious activity. He does attend meetings, yet he always brings
his laptop along so he can continue monitoring. When not
responding to reports, he engages in longer term tasks, e.g.,
scanning all systems to check for vulnerable versions of SSH. He
spends the remaining time learning, searching on the web for
information concerning the latest vulnerabilities, occasionally
downloading and testing exploit code to better understand exactly
how it works.

3. DIMENSIONS OF ADMINSTRATION
WORK
As Aaron, Bill, and Christine demonstrate, administrators of large
IT systems are not a monolithic group - they differ from each
other both within and across job responsibilities. As a whole,
however, they are distinct from other computer users along
several important dimensions, including the complexity and scale
of the systems they work with, the scope of their responsibility,
exposure to risk, degree of collaboration, and technical ability.
We will examine each of these areas in more detail, and describe
some of the work practices that administrators have developed
around them (for additional detailed case studies and further
discussion of work practices, see [3]).

One of the most remarkable aspects of modern system
administration is the potential scale and complexity of the systems
themselves. Something as conceptually simple as a website might
be implemented with a set of different components including
HTTP servers, web application servers, authentication servers,
content servers, firewalls, networks, and each of these
components might be replicated to improve performance or
reliability. Furthermore, each of these components could be
manufactured by a different vendor, and the particular
arrangement of components might be unique in the world. System
complexity can lead to specialization, with different experts
responsible for each component, but the narrowing of scope can
mean that no one individual fully understands the system as a
whole. Changes to these complex systems can be very involved:

Bill was one of many sysadmins we witnessed engaging in
regular tasks that required tens or hundreds of steps affecting
different parts of the system. In addition to complexity, sheer size
can be an issue. For example, database and storage systems can be
massive, with regular operations taking hours or days to complete.
One group of storage administrators we observed had so much
data accumulating that they foresaw a day within the next few
years when the time required to read and back up all their tapes
will exceed the media's 10-year lifetime. In addition, admins often
deal with vast numbers of different systems. For example, we
observed one web administrator undertaking the semi-monthly
process of resetting the 120 passwords for the various systems he
had access to. Not all sysadmins deal with the largest and most
complex systems, but all the admins we saw dealt with systems
significantly larger, more complex, and more numerous than other
computer users.

Another driving force in administrators' lives is risk and
concomitant stress. Many IT systems are mission critical: if they
fail then organizational activities come to a halt. System
unavailability can cost enterprises millions of dollars per day in
lost business or productivity, and data loss can be a true disaster
in any environment. Not every administrator works under such a
high-risk conditions, yet all the administrators we observed could
be certain that a system failure would quickly result in phones
ringing and people yelling at the very least. One of the database
administrators we observed stated, “If data is lost…that is when
you write your resume.” Sysadmins clearly have more at stake
than most computer users.

One other important attribute of administrators is their technical
inclination. We saw considerable script and tool building
activities among sysadmins, and we heard repeatedly of their
strong preferences for command-line interfaces. While our
observations and surveys found that many lack a formal
background in computer science, it is no surprise that people who
manage IT systems for a living practice tool building and a prefer
CLIs to a greater degree than many computer users.

One of the ways that administrators manage the complexity, scale,
and risk that they face is through extensive collaboration. All the
sysadmins we observed were parts of larger teams, spending
significant time using telephone, instant message, and e-mail
communicating with their coworkers. For example, in one 2.5
hour troubleshooting session analyzed in [13] and [3], we found
that 90% of the sysadmin's time was spent communicating with
other admins about the state of the system and how to proceed,
and only 6% of the time was spent gathering information and
running commands on the affected system. Responsibility for a
system was sometimes spread across several individuals to permit
sharing of knowledge, effort, and risk. Admins working together
on the same issue can pool experience and double-check each
other's actions. As in the case of Christine, we observed database
administrators sitting in pairs at a single keyboard while working
on critical operations, and only when both were satisfied would
each command be run. In addition, complex systems are often
managed through distributed responsibility, with experts in
different components working together to coordinate their
activities and keep the larger system running smoothly. This
permits a greater level of expertise for each component, though it
can result in no single person having a detailed understanding of
the entire system.

In mission critical environments, we saw planning and rehearsal
as important tools to manage risk. Rehearsal can be used both to
establish the correct sequence, syntax and arguments for all
commands, as well as to gain an estimate of the time required to
perform the operation (since operations usually must be
performed within a limited window of time). Database
administrators like Christine were the most strict in their
rehearsals, spending as much as a week testing all operations on a
series of test systems. Web and storage administrators were not as
strict, but they would still check all proposed changes on a test
system before touching the active system. Admin-created formal
and informal scripts can be part of the planning process, to help
ensure consistent and reliable execution.

Given the serious consequences of failure, administrators need to
maintain situational awareness of system state. In many cases,
however, the monitoring and notification provided by IT tools is
insufficient for administrator needs. Furthermore, the
heterogeneous nature of many systems means that no single tool
exists to monitor everything. As with the blind men and the
elephant, each component provides tools to monitor one part of
the system, but none gives a view of the whole. In addition, a
problem in one part of the system might be caused by a
misconfiguration in another part. We observed many instances
where administrators created their own tools to provide better
situational awareness. In one example, a DBA created a series of
dynamically updated web pages displaying important statistics
about running databases. In another case we saw a sysadmin
spend his own money to purchase a third-party tool that scanned
various log files and status web pages for certain regular
expressions, e-mailing or paging him when indications of system
failure were found. He stated that before he set up this tool, one of
their systems had been effectively non-functional for two days
before anybody realized. A final example is the "Crit-Sit"
(described in detail in [3]), where a group of admins needed to
spend several weeks working together troubleshooting an
intermittent system failure. They created a number of ad hoc tools
for collecting and integrating information from different
components, and eventually found the cause to be a subtle
interaction between the operation of several components.

The technical inclination of system administrators permits them to
build their own tools to manage risk and enhance situational
awareness. It also impacts their choice of interface style, both
common wisdom and our own observations indicate that system
administrators prefer command line interfaces (CLIs). While all
the sysadmins we observed used GUI tools for some tasks (e.g., e-
mail, web, or certain administrations tools), all preferred using
CLIs, especially when performing more critical tasks. To learn
more about this preference, we conducted a survey of 101 system
administrators from various backgrounds and organizations
(recruited through system administration professional
organizations). The survey included questions about education,
experience, what interfaces they used regularly, and questions
about their perceptions of CLIs and GUIs. The vast majority of
respondents found CLIs to be faster (89% to 5%), more
trustworthy (81% to 4%), more reliable (82% to 5%), more robust
(81% to 8%), and more accurate (75% to 11%). Results were
more split on likeability, with CLIs somewhat preferred (56% to
31%), and ease-of-use, with GUIs ranked higher by a plurality
(47% to 39%). Our observations provide further explanation for
the CLI preference. Speed is certainly important in many

situations. A GUI is not useful if it takes too long to come up and
populate itself with all the data for a very large system, as one
admin commented in reference to his GUI: “If the database is
crashing, and you have 5 minutes to find the problem and kill the
connection before the database crashes, if you have that many
connections, forget it.” Reliability, accuracy, trustworthiness, and
robustness are crucial for maintaining situational awareness, yet
we saw cases where GUIs would hang, or show outdated
information unless restarted, reinforcing a lack of trust in GUIs.
Another factor that probably influences administrator preference
for CLIs is tool building: virtually all CLIs support scripting,
whereas most administrative GUIs do not. Even without formal
scripts, when a sysadmin is following a lengthy procedure, the
command line window provides a history of everything that’s
been done. We often saw sysadmins scrolling back and forth
through the window to understand exactly where they were in the
process, and what the output was from each step.

While scripting and history are not a standard part of the
windows/menus/pointer GUI paradigm, there is no fundamental
reason GUIs could not natively support them. Consider the
example of SMIT [16], which maintains both a GUI and com-
mand line, converting every command in either form to the other.
History and scripting are supported through the command-line
part of the interface. One can imagine other approaches to
supporting history and scripting in a GUI: what is needed is an
interactive visual representation for each action and its output. In
SMIT the representation was exact, but this need not be the case.
Action representations could be shorthand, like navigation
breadcrumbs that change the UI when clicked. Implementation
would not be trivial, but it would be feasible, and very useful.

System administrators clearly face greater scale, complexity, and
risk than most computer users, and they tend to be more
technically inclined. These factors influence their work practices,
which involve extensive collaboration, planning and rehearsal,
and tool building. Existing administration tools often don't
support these practices, however. We observed fragmentation -
complex systems with many components, each with its own tool
providing a different, incompatible view of the system.
Configuration and log files were scattered, poorly organized, and
often used inconsistent terminology. We didn’t see any tools with
explicit support for collaboration, shared views of the system, or
inter-person workflows, and we saw few tools with support for
planning and rehearsal beyond basic scripting. We also saw many
clunky GUIs in environments where users prefer CLIs, since they
need fast, reliable, accurate, scriptable interfaces. The next section
contains a set of guidelines to outline how administration tools
could better support the way sysadmins actually work.

4. DESIGN PRINCIPLES
The following design guidelines address the particular
characteristics, needs, and work practices of system
administrators. The guidelines do not mandate particular UI
widgets or interaction styles, rather they specify tasks and
organizational attributes that should be supported regardless of
the details of the interface. They are not intended to be used on
their own, instead they should complement the guidelines already
in use for the design process. The first subsection contains
guidelines related to dimensions of scale, complexity, and risk.
The next subsection contains guidelines related to collaboration

and communication, since our studies suggest that virtually all
administrators collaborate extensively, and that existing tools
provide little support for it. The final subsection contains general
guidelines for tools used by technical people. All guidelines may
not be appropriate for all users and situations - different groups of
administrators fall along different points in these dimensions of
scale, complexity, risk, collaboration, and technical ability, the
rules in these sections should be emphasized commensurate to the
environment and characteristics of the particular users.

4.1 Scale, Complexity and Risk
A real-world installation may be huge, with regular operations
requiring hours or days to complete, yet administrators usually
have very limited time windows in which to complete changes.

• Provide progress indicators, preferably displaying the
amount of time remaining.

• Support forecasting of how long an operation will take
before the operation begins. This would help the planning
and rehearsal process, as we observed administrators
extrapolating execution times from test systems to estimate
how long an operation will take on the different hardware
and data of the production system.

• Perform operations in an asynchronous, non-blocking
manner. For example, an administrator working on a very
large database won’t use a GUI tool that freezes while filling
a list box with the names of all 25,000 database tables. The
ability for sysadmins to perform other tasks while long-
running operations are progressing is essential.

• Support more flexible management of long-running or
resource-intensive tasks. Specifically, permit pausing
operations in progress, record and rollback (a.k.a. undo), to
permit a system to quickly return to a previous state, and a
resume function, so that if a long running operation is
interrupted for any reason, it can pick-up from where it left
off. Operation restarts as a result of a dropped connection,
for example, can be costly and frustrating. Databases already
support undo, but generally don’t support suspend or resume,
and most other IT systems don’t support any of these.

• To the greatest extent possible, do not require systems to go
offline to perform maintenance operations. Change windows
for system downtime are limited, and the more offline
operations there are, the harder it will be for sysadmins to get
everything done in the change window.

Systems may be composed of numerous components that must
work together smoothly. Any tool will likely be used with many
other tools as part of a larger system. In general, design tools to
work well with others, in particular:

• Use standard terminology for reporting configuration and
state information. We observed an episode where an
administrator wasted 45 minutes when two different tools
(from the same vendor) reported the same configuration
information using syntax so different that the administrator
was convinced that they were reporting different
information.

• Use standard configuration and logging formats, wherever
available. Log and configuration files from different tools
will be searched and correlated together.

• Provide APIs/plug-ins so the tool can be integrated into
system-wide monitoring and management meta-tools (e.g.
dashboards).

• Follow platform conventions in structuring the tool’s
installation and data storage file system directories.
Administrators familiar with the platform will expect to find
data in certain places.

• Provide a clean separation of user and non-user data in file
system directories and within individual files. It is very
desirable to manage product or administration tool binary
files independent of the user-data that a tool generates and
manipulates. For example, if a file containing both user and
non-user data is updated during application of a patch, the
user data may be lost. Likewise, user data is often managed
as an asset, and backed-up and/or archived on a regular
schedule. Mixing information that is intended to only be read
and updated by machine in a file with information that can
updated manually by human is likely to cause errors.

• Configuration of multi-component systems can take
considerable time and effort. Make sure that errors in
configuration are discovered quickly, by checking
interactions with other components as soon as possible. For
example, the troubleshooting session analyzed in [13] was
complicated by the fact that a configuration error in one
component was not reported until a second component was
configured (even though it could have been checked earlier).
This lead to a wild goose chase looking for errors in the
configuration of the second component.

• Given the complex, distributed nature of some systems,
administrators often access systems remotely. Make sure that
administration tools behave well over slower remote con-
nections, and handle inadvertent disconnections gracefully.

Administrators may regularly use many different tools, and won't
necessarily be an expert in all of them.

• Provide an easy-to-use interface for users who are
technically sophisticated, yet may use the tool infrequently.
This does not necessarily mean a GUI or wizard, since
sysadmins can be very happy with a well-designed CLI. The
following quote illustrates this point - a sysadmin is
comparing the GUI and CLI available to him for a particular
task: "If the command line were cryptic and not so clear, I
would say, all right it makes sense to use the GUI, but it's so
simple using the command line. If you don't know
something…for example, if you want to list the objects and
you don't know how to do that…you type 'object' and it
would say 'object' and then give you all the options you
could run 'object' with. Then you'd say 'object list' and it
would show you all the objects."

• Use conventional and consistent terminology in document-
ation and interfaces. Being unique or creative does not
facilitate positive transfer among tools that sysadmins use.

• Make all documentation available on the web, searchable by
outside search engines such as Google™. All the
administrators we observed would look up error codes and
messages using Google™. They did not use search engines
on tool vendor websites, in part because they would then
miss out on other sites that discuss the same tool.

Modern IT systems have hundreds or thousands of configuration
parameters that may interact in unexpected ways. There exist
external tools to help configuration management [4][8], yet
existing administration tools could do a better job.

• \If the system uses configuration files, include comments in
the configuration files, explaining parameters and
interactions, and group related parameters together in the
file. As an example of the problems that can arise from
poorly organized files, we observed a troubleshooting
session involving a component sending and receiving
network traffic on two different ports. The port values were
specified several hundred lines apart in the configuration file,
allowing an administrator to confuse one for the other. Even
if the two options could not have been co-located, comments
could have referred between the two.

• Provide a means of comparing configuration information,
either between systems or for a single system over time. This
would allow administrators to compare working and non-
working systems, to find which changes cause problems.

• Another approach to managing large numbers of
configuration parameters is to group interacting parameter
values together into sets of consistent, higher level functional
"profiles." Each profile would have a set of parameter
values appropriate to a given function, i.e. these parameters
should be configured together to complete a function. This
abstraction would permit less experienced administrators to
make changes without having to understand all of the
underlying interactions.

• Configuration parameter values that get loaded during
system startup may differ from later operational values.
Provide tools that allow a sysadmin to see both values, and
to propagate values bidirectionally to prevent errors and
improve sysadmins’ understanding of the system.

Operations on complex systems may involve many steps.
Sysadmins often manage these tasks by creating formal scripts, or
by using the command-line window to display a history of
everything they’ve done, showing where they are in the process
and the result of each step.

• Both GUI and CLI tools should support scripting of complex
processes.

• Some complex tasks would benefit from support for mixed
initiative scripting, where parts of the script execute
automatically, but other parts require human intervention to
complete the action. Generally, complicated processes that
can’t be completely automated are implemented in an ad hoc
manner with different scripts separated by user actions.

• GUI administration tools should also support a history.
When there are meaningful chains of discrete steps, provide

a view of completed steps and any associated completion
codes, status, or other output.

• Administrators often share scripts. Shared tools can be an
excellent means for capturing and reusing organizational
knowledge. This can be facilitated by implementing central
tool repositories, and easy-to-understand scripting languages.
For example, see [7][12] which describe A1/ATMA, a proto-
type sysadmin scripting tool and repository we developed.

Administrators need to establish and maintain situational
awareness, including but not limited to complex IT topologies,
conceptual models of transaction workload and flows, and IT
management processes and governance. Situation awareness is
not just an administrator being able to project what will happen
next based on information about system configurations and states,
rather it is also an understanding of wider IT management related
events including help desk, change management, and problem
management systems. Situation awareness has a social component
as well: knowing what other sysadmins are doing, and where, is
an important aspect of managing IT systems.

• Situation awareness has been described as a process that
progresses through three stages – perception, comprehension,
and projection [6]. Administration tools should be designed
to support development and maintenance of projection-level
situation awareness [2].

• Provide alerting tools to help automate monitoring. Alerts
should support customizable, progressive thresholds,
selectable destinations (e.g. pager, email, console), and be
suppressible.

• Provide visual representations that selectively layer physical
and logical representations with configuration and
operational state information.

• Log both who launches an operation on the system and also
an optional comment from the administrator describing why.
In an internal development study of problem determination,
after checking for a “pulse”, the next thing a troubleshooting
sysadmin usually does is find if someone has changed
something. Knowing what changed, who made the change,
and why can greatly help diagnose problems.

• Whenever changes are made to a system, automatically log
all the parameters/settings that changed. When a system goes
from a working to non-working state, administrators spend
considerable time determining what changed to cause the
failure. A log recording everything that changed, and when,
would greatly help troubleshooting.

Administrators practice planning and rehearsal to manage risk
during complex operations.

• Tools should provide formal support for migration of
scripts/operations from test to production environments, for
example, encapsulating an operation in such a way that it
could be moved from one machine to another without
modification. As described in [3], we observed practices of
writing scripts, executing them on one machine, then
copying and editing them to run on the next machine. Every
time edits occur, errors can be introduced.

• Allow scripts to be checked before execution, so the user can
be sure that they will run, and know how the script will
change the system, and approximately how long the script
will take to run. This would let a sysadmin create a script to
perform a certain operation, and know ahead of time that it
will run as expected in the given time window.

• When errors in script execution occur, display to the user
whatever changes have been made to the system, so the
resulting system state is clear to the user. We witnessed
instances where errors in scripts or other operations left the
system in an unknown state.

In risky environments, administrators often must respond quickly
to signs of impending failure.

• Tools must start up and execute sufficiently quickly to
respond to critical situations.

• Permit users to record or specify the normative baseline of
system operation, then automatically issue warnings when
there are significant departures from the norm. This would
signal potential future problems and provide sysadmins more
time to react.

4.2 Collaboration and Communication
System Administrators will work together, whether or not this
collaboration is assisted by their tools. Sysadmins will often work
on the same problem from different computers.

• Provide a means for sysadmins to share views of system
state, so they can see and discuss the same thing. We
observed some admins using screen-sharing software, but it
would be better if administration tools formally supported
shared views. For example, just as instant messaging tools
allow users to know whether their buddies are logged in,
administration tools could let users know who else is logged
in, what they’re doing, and let them share views of the
system. Alternately, there could be something like a URL
that could be passed via IM or e-mail to let one sysadmin
show another exactly what is on the screen.

Complex activities may involve handoffs between sysadmins
responsible for different components.

• Tools should support being part of a larger workflow. Shifts
in responsibility could be encoded into scripts, with a new
sysadmin automatically notified and brought to the right part
of the interface when it’s their turn.

As activities such as problem determination escalate, more people
are pulled into the activity for their particular technical expertise
or experience, creating a spreading activation effect.

• Provide support for grounding new participants as quickly as
possible when they join the activity. We’ve observed that a
lot of time is spent “bringing the new person up to speed” as
to what has already been tried, and the results of attempted
resolutions or investigations

4.3 Interfaces for technically oriented people
System administrators are technically inclined people responsible
for configuring, maintaining, and fixing computer systems. Our

observations suggest that in their work, they must not only
determine what actions to take, they must also understand why to
take certain actions. The process of troubleshooting is often
concerned with determining the state of a system, but it can also
be about fixing a system administrators incorrect understanding of
how the system works.

• Administration tools should present information in such a
manner as to help the sysadmins understand how the system
works. This is a rather general point that may be aided by the
following specific example. In the troubleshooting session
analyzed in [13], the administrator was using a tool to
configure one server to permit communication between two
additional servers. An error message appeared, saying,
“Cannot reach server: Error 1231A”. Given that there were
three servers and numerous network ports involved, the error
was vague to the point of uselessness. If, however, the error
message had reported, “Cannot reach server ‘foo.bar.com’ on
port ‘7234’”, then the administrator could have very quickly
isolated the cause. As it was, the administrator spent several
hours trying to isolate problems with the wrong server based
on a faulty assumption. Administrators are technical people
trying to understand and solve problems, and tools must give
them the detailed information to do so.

• As stated above, visual representations can help admin-
istrators understand complex system state and behavior,
especially when multiple components are interacting.

Given their technical inclinations, it is not surprising that system
administrators express a preference for command-line interfaces.
We believe, however, that this preference is founded on the needs
of system administrators for fast, reliable, trustworthy tools for
performing complex operations on large, complex systems in a
risky environment. To be successful, any administration tool,
whether it has a GUI or CLI, should have the following attributes:

• Speed – the tool must launch and respond quickly enough to
deal with emergencies.

• Scriptable – it must be possible to drive the tool from a
human-readable pre-defined script.

• Reliable/Trustworthy/Transparent – from our observations,
many GUIs are deemed unreliable or untrustworthy because
they crash or hang and display outdated information. The
continually running nature of a GUI means that the data it
shows could be out of date if an internal problem has stopped
data collection. A CLI tool, running on demand, usually
shows correct information, or nothing at all. GUIs could
overcome some of these problems by providing progress and
provenance information. For example, they could stamp
displayed information with the time it was collected, or
provide a visual indication showing that the tool is still
running and collecting up-to-date information.

• As mentioned earlier, GUI’s often do not scale across
hundreds or thousands of resources. In some cases there will
be no substitute, expert sysadmins will need the power that
CLI and scripting provides to perform operations targeted at
large collections of resources in “batch mode”. GUIs must
be tested against the largest conceivable system size, and if
they don’t perform then a CLI must be provided.

5. CONCLUSIONS
IT System Administrators are a crucial population who are not
always well served by the tools at their disposal. We believe that
administration tools can be improved by supporting the larger
context of administration work, addressing the scale, complexity,
and risk faced by system administrators. Of course, different
sysadmins have disparate environments and practices, so the
guidelines presented here must be applied based on the particular
characteristics of the users.

Future work will be needed to evaluate the best ways to satisfy
the guidelines, and to evaluate their impact and cost. Many of the
guidelines are instances of known good practices, so the question
must be considered as to why they aren’t followed more often.
We recognize that many of these guidelines could be difficult to
realize. For example, an area as straightforward as improving
error messages can be difficult due to the demands of the
development process, where user-visible text often must be frozen
before any other part of the interface, and generic messages are
preferred since they may be reused many places. In addition, it
may be difficult to balance some of the different guidelines, e.g.,
a feature such as collaboration support could increase complexity
and reduce reliability. No doubt other barriers exist due to
marketing and business considerations involved in creating admin
tools. In the end, however, administration tools will be better and
administration less costly if developers remain aware of the
particular needs of system administrators while developing their
tools, even if only some of the guidelines can be met. As one
developer commented after seeing a presentation containing some
of our video and conclusions about sysadmin needs, “Without this
kind of information, we will be doomed to endlessly deliver
beautiful, sparkling tools that are totally inappropriate to the jobs
our customers need to use them for.”

6. ACKNOWLEDGMENTS
The huge labor involved in performing and analyzing this series
of ethnographic field studies was the work of many beyond the
authors, including Rob Barrett, Christopher Campbell, Steve
Farrell, Eser Kandoğan, Cheryl Kieliszewski, Paul Maglio,
Madhu Prabaker, Joe Ryan, Leila Takayama, and Anna Zacchi.
Credit for the sysadmin survey and analysis goes to Eser and
Leila. Thanks also to Jeanette Blomberg for her valuable advice
on conducting ethnographic studies for those of use who hadn’t
studied Anthropology. Special thanks go out to all the system
administrators who took time out of their busy schedules to
answer our questions, fill out our surveys, and who put up with
being followed around with video cameras.

7. REFERENCES
[1] Anderson, E. Researching system administration. Ph.D.

Thesis. University of California, Berkeley, 2002.
[2] Bailey, J., Etgen, M. & Freeman, K. Situation awareness and

system administration. In Barrett, R., Chen, M., & Maglio, P.
P. (Eds). System Administrators are Users, Too: Designing
Workspaces for Managing Internet-scale Systems, CHI 2003
Workshop.

[3] Barrett, R., Kandogan, E., Maglio, P. P., Haber, E. M.,
Takayama, L. A., Prabaker, M. "Field Studies of Computer

System Administrators: Analysis of System Management
Tools and Practices." Proc. CSCW 2004.

[4] Burgess, M., ‘‘A Site Configuration Engine,’’ Computing
Systems, Vol. 8, Num. 1, p. 309, MIT Press, Cambridge,
MA, Winter, 1995.

[5] Dijker, B., A Day in the Life of System Administrators,
SAGE, http://sageweb.sage.org

[6] Endsley, M.R. (1996). Automation and situation awareness.
In R.Parasuraman & M. Mouloua (Eds.), Automation and
human performance: Theory and applications (pp.163-181).
Mahwah, NJ: Lawrence Erlbaum.

[7] Haber, Eben, Eser Kandogan, Allen Cypher, Paul P. Maglio,
and Rob Barrett, "A1: Spreadsheet-based Scripting for
Developing Web Tools." Proc. USENIX LISA 2005.

[8] Hagenmark, B., K. Zadeck, ‘‘Site: A Language and System
for Configuring Many Computers as One Computer Site,’’
Proceedings of the Workshop on Large Installation Systems
Administration III, p. 1, USENIX Association, Berkeley,
CA, 1989.

[9] Halprin, G. The Workflow of System Administration. In
Proceedings of the 6th Annual Conference of the System
Administrators Guild of Australia (SAGE-AU ’98)
(Canberra, Australia, July 6-10, 1998)

[10] IBM, “Autonomic Computing: IBM’s Perspective on the
State of Information Technology”; http://www.ibm.com/
industries/government/doc/content/resource/thought/278606
109.html

[11] Kandogan, Eser, and Eben M. Haber, "Security Admin-
istration Tools and Practices." Security and Usability:
Designing Secure Systems that People Can Use. Ed. Lorrie
Faith Cranor and Simson Garfinkel. Sebastapol: O'Reilly
Media, Inc., 2005, pp357-378.

[12] Kandogan, Eser, Eben Haber, Rob Barrett, Allen Cypher,
and Paul Maglio, "A1: End-User Programming for Web-
based System Administration." Proc. ACM UIST 2005.

[13] Maglio, Paul P., Eser Kandogan, and Eben Haber, "Distrib-
uted Cognition Analysis of Attention and Trust in Collab-
orative Problem Solving." Proc. Cognitive Science 2003.

[14] Patterson, D. et al. Recovery-Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies,
Technical report CSD-02-1175, Computer Science Dept.,
Univ. of California, Berkeley, 2002.

[15] Sandusky, R. J. Infrastructure Management as Cooperative
Work: Implications for Systems Design, In Proceedings of
the ACM Conference on Supporting Group Work
(GROUP’97) (Phoenix, Arizona, November 16-19, 1997),
ACM Press, New York, New York, 1997, 91-100

[16] Vetter, Scott, and Susan Segura, “System Management
Interface Tool SMIT.” IBM RedPaper,
http://www.redbooks.ibm.com/abstracts/redp0105.html.

[17] Woods, D. D., Decomposing Automation: Apparent
Simplicity, Real Complexity. In Parasuraman, R., Mouloua,
M., (Eds). Automation and Human Performance – Theory
and Applications, Lawrence Erlbaum Associates, New
Jersey, 1996.

