

A1: End-User Programming for

Web-based System Administration

Eser Kandogan, Eben Haber, Rob Barrett, Allen Cypher, Paul Maglio

IBM Almaden Research Center

650 Harry Rd.

San Jose, CA 95120,USA

Tel: 1-408-927-1949

{eserk, ehaber, barrett, pmaglio}@almaden.ibm.com,

acypher@us.ibm.com

Haixia Zhao

University of Maryland,

College Park

Department of Computer Science

A. V. William Bldg.,

College Park, MD 20740, USA

haixia@cs.umd.edu

ABSTRACT

System administrators work with many different tools to

manage and fix complex hardware and software infrastruc-

ture in a rapidly paced work environment. Through exten-

sive field studies, we observed that they often build and

share custom tools for specific tasks that are not supported

by vendor tools. Recent trends toward web-based manage-

ment consoles offer many advantages but put an extra bur-

den on system administrators, as customization requires

web programming, which is beyond the skills of many sys-

tem administrators. To meet their needs, we developed A1,

a spreadsheet-based environment with a task-specific sys-

tem-administration language for quickly creating small

tools or migrating existing scripts to run as web portlets.

Using A1, system administrators can build spreadsheets to

access remote and heterogeneous systems, gather and inte-

grate status data, and orchestrate control of disparate sys-

tems in a uniform way. A preliminary user study showed

that in just a few hours, system administrators can learn to

use A1 to build relatively complex tools from scratch.

ACM Classification: H5.2 [Information interfaces and

presentation]: User Interfaces. - Graphical user interfaces.

General terms: End-User Programming.

Keywords: System Management, Web-Portal User Inter-

faces, Spreadsheets.

INTRODUCTION

System administrators (sysadmins) design, configure, trou-

bleshoot, and maintain the complex Information Technol-

ogy (IT) infrastructures that support much of modern life.

IT systems typically comprise dozens of software compo-

nents (e.g. database management systems, web servers, ap-

plication servers), that are distributed across multiple net-

works, computer and storage hardware, and operating sys-

tem platforms. Though important and interesting, these

computer users have rarely been studied by human-

computer interaction researchers [3].

In a series of ethnographic field studies [2], we observed

that system administrators often need to build small custom

tools quickly as they configure, monitor, or troubleshoot

systems end-to-end. Although each vendor provides tools

for managing its own systems, the vendor tools often do not

support tasks that require access to and control of multiple

systems. Moreover, unique configurations and considera-

tions at each site often require idiosyncratic procedures and

multi-step processes that may not be supported by vendor

tools. In such cases, system administrators develop their

own tools. In addition, because system expertise is distrib-

uted across people and organizations, administrators must

frequently collaborate with others. In our field studies, we

observed significant collaboration in the development and

use of custom tools.

Recognizing the need for integrated system administration

workspaces, IT industry leaders are introducing one-stop

web-based consoles for administrators, consolidating all

admin functions in one console [25]. Such consoles offer

many advantages, including a consistent control interface

with a homogeneous view of various system components,

but the primary advantage is that all functionality needed by

system administrators is accessible in one place. However,

such consoles typically fail to support customization for

admins’ particular environments, processes, and tasks.

A system administrator’s primary task is to maintain IT

rather than to develop tools. This is precisely the definition

of an end user programmer: someone who is not interested

in programming per se, but who needs some of the power

of programming to accomplish their tasks effectively [17].

Surveys suggest that most system administrators do not

have a programming background, nor do they have a lot of

time to spend developing quality software [23]. The fact

that sysadmins manage to collaboratively build custom

tools by cobbling together the resources currently available

to them shows that they have a need for end user program-

ming. There is particularly a need for programming web-

based tools, however web programming (such as J2EETM) is

outside the skill sets of many system administrators.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page. To copy other-

wise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

UIST’05, October 23–27, 2005, Seattle, Washington, USA.

Copyright 2005 ACM 1-59593-023-X/05/0010...$5.00.

211

To meet system administrator needs, we developed A1, a

spreadsheet-based environment with a task-specific lan-

guage for quickly building small tools that interact with

external systems and migrating existing scripts to run as

web portlets. Using A1, system administrators can create

spreadsheets to access heterogeneous systems, gather and

integrate status, and control disparate systems uniformly.

In what follows, we first describe related work in systems

administration environments and in spreadsheet program-

ming. Second, we briefly relate a case from our field studies

to demonstrate issues in sysadmin workspaces and outline

some design requirements. Third, we give an overview of

A1’s design, and illustrate its use by an example. Finally,

we present results from a preliminary user study of A1.

RELATED WORK

A common environment for system management is the

shell-based console. Sysadmins often open a number of

shell consoles, execute command-line instructions and

automate tasks through scripts in languages such as C Shell

[11] or Perl. System management tools are typically ven-

dor-specific—each vendor provides a management tool for

its own systems, such as IBM’s DB2 Control Center. Tivoli

and EMC, two leading providers of system management

tools, have hundreds of enterprise-wide management tools,

which are now being released as integrated environments.

Tivoli’s Enterprise Console provides comprehensive man-

agement capabilities, including monitoring systems from

multiple vendors. One limitation is that they often do not

provide system administrators with the level of customiza-

tion they may need. For example, the systems typically of-

fer standard, prepackaged charting capabilities without a

language that enables end users to create their own system

views. PIKT [19] and Cfengine [4] are well known in the

sysadmin community as domain-specific languages for

monitoring and configuration management of diverse envi-

ronments, respectively. Unfortunately, complexity of these

languages and lack of supporting visual environments make

them suitable primarily for experts.

Related work on spreadsheets is extensive. Though effec-

tive for tabular calculations, off-the-shelf spreadsheets lack

expressibility and programming power [27,6]. There have

been many attempts to extend the familiar spreadsheet para-

digm to provide programming capabilities for solving com-

plex problems. These efforts include re-examining the

spreadsheet language and model (e.g. parallel concurrent

languages [27,24], constraints-based languages [22], object-

oriented functional languages [7], visual languages [20]),

reexamining data/cell types (e.g. user interface objects

[15,9,20], graphics objects [5], abstract objects [5]), en-

hancing the user interface (e.g. forms-based [5], three-

dimensional layouts [8]), and tailoring systems to the appli-

cation domain (e.g. user interface design [15,9,20], interac-

tive graphics [10,26], image processing [13], logic pro-

gramming [21]). Of particular relevance is work by Burnett

and colleagues, who incorporated abstraction and complex

graphical and user-defined types into the spreadsheet para-

digm while maintaining a declarative evaluation model [5]

through objects represented as sheets.

A1 extends the traditional spreadsheet model by 1) permit-

ting cells to contain arbitrary Java™ objects (in addition to

numbers, strings, etc.), 2) extending cell code to include

calls to methods of the cell objects, and 3) allowing cells to

contain procedural code blocks whose execution is fired by

events in the sheet. This approach differs in several impor-

tant ways from previous work [5, 7, 9]. The other ap-

proaches use object models specific to their systems, and

require new languages for object definition. Our use of

Java™ has the advantage of a large base of existing users,

tools, and libraries, particulary for IT management. In ad-

dition, the other approaches were purely functional pro-

gramming environments, whereas our procedural code

blocks provide, in our opinion, a more natural means of

managing the side effects (such as restarting a system) in-

herent in system administration. A1 carefully combines

procedural and functional constructs through an event-

based approach to achieve rich control structures. A1 takes

the inherently event-based programming of spreadsheets

and extends it such that cells can either explicitly or implic-

itly create (e.g. state modifying method calls), listen (e.g.

object reference in a function), combine, and process

events. Existing spreadsheets, such as Microsoft Excel,™ do

permit users to write programs (e.g. in Visual Basic®) that

interact with external systems [14]. This approach has

drawbacks: first, these external systems are not explicitly

represented in the spreadsheets as first-class cell contents

(unlike numbers, strings, etc.). Thus, interaction with exter-

nal processes is done through a language and programming

model (e.g. Visual Basic®) different from that used in the

spreadsheet and typically requires substantial programming

skills. Second, functionality provided by external processes

(e.g. operations defined on servers, such as shutdown) may

not be exposed to the user in a form that can be used readily

in spreadsheet expressions. A1 is also distinguished in de-

ployment of tools as server-side web portlets, a boon for a

wide user base.

STUDIES OF SYSTEM ADMINISTRATION

We conducted eleven field studies of database, web, operat-

ing system, security, and storage administrators at large

industrial service delivery centers (see also [2]). We used a

variety of qualitative and quantitative techniques to gather

data, including surveys, diary study, interviews, and natu-

ralistic observations. Over 40 days of observation, we

watched 20 different sysadmins of various skills and spe-

cializations, and collected more than 250 hours of video-

tape. In these field studies, we observed several kinds of

collaboration in the development and use of custom tools:

tool code sharing among admins who modify tools for their

own use, data sharing where the same tool is used by multi-

ple admins (often via the web) for shared situational aware-

ness, and activity coordination where a tool helps orches-

trate multiple admins performing different tasks in an activ-

ity. Below, we describe one sample episode to illustrate

practices related to tool development.

212

The Crit Sit

“Crit sits” are critical situations that are initiated when a

customer is unhappy with IT services. In crit sits, experts

are brought together to work exclusively on a problem.

Typically, these experts converge on a central location and

work in a “war room” for the duration of the problem while

others may participate via conference calls and instant mes-

sage sessions to keep everyone up-to-date. Crit sits are an

example of collaboration in the extreme where there is a

strong need for specialized tool development.

In this particular crit sit, we observed an intermittent failure

of a particular web site. The primary symptom was sudden,

unexplained increases in the number of http server connec-

tions until no more requests were accepted. Because of the

complexity of the infrastructure, the source of the problem

might have been anywhere including the http server, appli-

cation server, application, and database servers. Thus, a

number of sysadmins with different expertise were brought

in to help resolve the issue.

The intermittent nature of the problem however made trou-

bleshooting difficult, requiring sysadmins to maintain con-

stant awareness of the situation. Specifically, the sysadmins

needed to obtain and correlate status data from the various

components involved. Jack, the architect, tracked the situa-

tion from the perspective of the web application server by

monitoring its connections using vendor-provided visualiza-

tion software. Unfortunately, no such utility was available

for the http server connections. Thus, to analyze the situa-

tion end-to-end, Rob (one of the web sysadmins) decided to

write a script that would repeatedly output the number of

http server connections along with time stamps. This little

script turned out to be difficult to write keeping Rob and

later three others busy for more than an hour. The problem

that they faced concerned output. They knew the commands

to find the current time and the number of http connections,

but they struggled to output both values on the same line.

Once the script was working, Rob ran it on the http server

machine. Jack then suggested that Rob put the numbers into

the crit-sit chat room, which he did regularly so the remote

collaborators could see what was going on and correlate

discrepancies in the numbers as seen by the various compo-

nents. Eventually connections maxed out, Rob got a mem-

ory dump, and everyone tried to analyze the situation based

on the collected information. This occurred several times

during the day with no resolution. In fact, this crit sit con-

tinued for several weeks after we left. In the end, the source

of the problem was found to be the result of inconsistent

system settings across different components, and an error in

the application code that complicated and exacerbated the

inconsistencies.

Discussion

In this and many other cases, administrators struggle to col-

lect as much information about a problem as possible

through either vendor tools or their own tools. Tool devel-

opment is often secondary to their real task, which is under-

standing the issues and finding a solution to the problem

quickly. This example clearly illustrates what we found in

many of our studies: sysadmins collaborate to (1) integrate

information across disparate systems, and (2) build, and

share custom tools for special cases.

We saw sysadmins collaborate in many ways, including

helping each other in writing scripts, and sharing crucial

system state to raise general awareness of the developing

situation. We watched Rob repeatedly copy the number of

http connections from a terminal window into a chat win-

dow so that others could see the same data. We also ob-

served Rob, Jack, and others collaborate to write a script.

Sysadmins often need to integrate information from multi-

ple components of the infrastructure to analyze a situation

end-to-end. In this case, while Jack examined the number of

connections at the web application server, Rob examined

the connections at the http server. Unfortunately, each re-

lied on separate tools and so truly integrating information

on a single display was not an option. Use of separate tools

potentially led to increased cognitive demands, delayed

problem resolution, and ultimately increased costs.

Sysadmins often need to develop their own tools. In this

case, there was a visualization tool for monitoring the ap-

plication server’s connections, but nothing for the http

server connections. Therefore, Rob wrote a tool himself.

We watched an hour go by as several people attempted to

simply output a timestamp and a count on a single line of

text, let alone create a visualization of the connections.

Based on this and other cases we observed, we see several

requirements to support effective end-user programming for

system administration:

1) A visual environment that supports for rapid develop-

ment of custom tools in a flexible and powerful way, as in

command-line interfaces, but one that also facilitates rich

visual representation of and interaction with data, as in

graphical user interfaces,

2) A task specific language that is highly reusable with

components that supports integration of information from

various systems, and

3) A shared workspace that supports collaborative prac-

tices of sysadmins including collaborative development of

tools and sharing of data from multiple systems.

A1: END USER PROGRAMMING FOR SYSTEM

ADMINISTRATORS

Nardi [17] identified three criteria for success of end user

programming: (1) a visual environment, (2) a task-specific

language, and (3) support for collaborative practices. A1,

our spreadsheet environment for sysadmins, meets Nardi’s

end user programming criteria. Let’s describe each in turn

in more detail.

A spreadsheet-based visual environment

Why a spreadsheet? We chose a spreadsheet as a starting

point for several reasons. First, we wanted to leverage exist-

ing knowledge of the spreadsheet paradigm to allow admin-

istrators to create simple tools rapidly and potentially moti-

213

vate them to explore and experiment. Second, visual

spreadsheet environments support a direct association of

code and data to support reusability and incremental devel-

opment, allowing users to examine cells, understand how

they work, and build on existing code. Thus, users can eas-

ily take sheets passed on from others and modify them for

their own purposes. Third, automatic cell naming through

cartesian layout simplifies creation of small tools (though

cells may be given user-specified names to help as tools

grow more complex). Fourth, the grid simplifies graphical

layout, a pain point in many tools (even command-line

tools, as shown in the case study). Fifth, the spreadsheet

model is more resilient and forgiving than most program-

ming languages as an error in a cell only affects referring

cells and does not necessarily invalidate the entire sheet or

cause a program crash. Finally, As Nardi [17] notes,

spreadsheets mix a textual language with charts and graphs,

offering a mixture of command line and graphical interac-

tion styles. This is an especially important point for gaining

acceptance from system administrators, who typically pre-

fer command-line interaction, yet seek to attain the higher

situational awareness that graphical output can provide.

A1 extends the spreadsheet paradigm with objects in cells,

code in cells that act on objects, and sheets that can be de-

ployed as web portlets, each of which are described in de-

tail the next sections. These extensions are fully supported

by the spreadsheet UI. A1 permits cells to contain arbitrary

Java objects which can be used to manage external IT

systems. Creating and interacting with these objects is sim-

plified by a visual environment where various object com-

ponents are available from a toolbar. Object-referencing

formulas are simplified through popup windows that list

available object methods, and the familiar copy and paste

(as in spreadsheets) is used to replicate code effectively.

Users can incrementally develop code that is always avail-

able for execution with rapid visual feedback, much like in

interpreted languages and environments.

A sysadmin-specific task language

To satisfy sysadmin needs, A1 extends the spreadsheet

paradigm in two ways: (a) objects as first-class cell con-

tents, and (b) event-driven procedural and functional code:

Objects as First-Class Cell Contents

To support system administrators’ needs for control of ex-

ternal systems, A1 adopts an object-based approach. A1

provides a library of objects that can represent rich data

types (e.g. collections, queues, stacks), connections to ex-

ternal systems (e.g. Secure Shell or JMX), graphical wid-

gets (e.g. Button, TextBox, ComboBox), and visualizations

(e.g. X-Y plot, pie chart). These objects are available from

the toolbar to allow the user to point and click to connect to

servers, for example.

Objects have multiple properties (state) and methods (be-

havior). Formulas can refer to objects to query their proper-

ties, and method calls allow users to perform operations on

objects (thereby altering the object’s state and triggering

further execution). For instance, cell A2 can contain a sys-

tem object such as JVM (Java Virtual Machine) (e.g. A2:

JVM()), cell A3 can contain the expression

“=A2.freeMemory()” to query its available free memory,

and cell A4 can contain the code “{A2!gc()}” to run the

garbage collector on the JVM object and later on to trigger

cells that depend on A2. Some methods may require addi-

tional parameters, which can be specified using the familiar

spreadsheet language (e.g. A2!load(A7)). A1 uses weak

typing when matching objects to parameters. For example,

numbers are automatically converted to strings and vice

versa depending on the context and methods involved.

A1 supports the use of any Java object in cells. Java ob-

jects can be created in cells just like built-in objects (e.g.

B1: java.util.Vector()) and methods can be used in

expressions (e.g. = B1.size()) and code (e.g.

{B1!addElement(A3)}). Though this can be sufficient

for most purposes, A1 also provides plugin architecture for

creating new objects to support graphical interaction and

more sophisticated triggering mechanisms such as push

from external processes (particularly important for interac-

tion with remote systems). Once developed, new objects

can be used just like built-in objects in code and expres-

sions for controlling and querying systems. We believe the

success of A1 will depend to a large degree on its contain-

ing a rich set of domain-specific objects.

In A1, each object is associated with interactors that spec-

ify how it will be rendered on the screen, and how the user

may interact with it. Objects can be rendered textually

(when there are no interactors specified an object is ren-

dered simply using output from its toString() method)

or graphically (e.g. an X-Y plot). Interactors are platform

independent objects that ensure that when interaction oc-

curs events and state of objects are passed properly between

the platform-specific interactor instances and the cell ob-

ject. In the current implementation, A1 supports three plat-

forms: text-based terminal, Java/Swing-based client, and

HTML-based server. Each platform-specific instance de-

fines how to render and process events in the platform, for

example a text-based terminal platform interactor specifies

how to render a Button in textual form and how to process

keyboard events as button events, likewise an HTML-based

server interactor renders the Button as a form input ele-

ment.

Event-driven Procedural and Functional Code

Rich control flow mechanisms may be required to support

system administrators to effectively control systems, for

example to execute commands on a remote system, delete

log files, or change system configuration. To enable suffi-

cient control flow capabilities in spreadsheets, A1 extends

the spreadsheet language to include event-driven procedural

code. These code blocks can be triggered to execute upon

events, such as changes to cell values, clock ticks, button

presses, or user-specified conditions. When triggered, code

containing procedural statements can execute to assign new

values to cells, distribute data collections across cell ranges,

call object methods, and even trigger other code blocks.

214

A1’s event-driven code approach fits nicely with the

spreadsheet metaphor, where functional code in expressions

is implicitly triggered by the dependencies specified in cell

expressions. A1 builds on this and provides further con-

structs, such as the on() construct, which allows code seg-

ments to define explicit triggers based on events (e.g. on

(clock) {A2!gc()}) and the when() construct, which

triggers code based on boolean expressions, e.g.:

when(A2.freeMemory()/A2.totalMemory()<0.2)
{ A2!gc() }

Through these event mechanisms, users can achieve rich

control flow in their programs. For example, A1 supports

both push and pull models when interacting with remote

systems. In the pull case, a command executed in A1 causes

some action on a remote system, possibly retrieving a value.

In the push case, an external system event is propagated to

A1 and triggers further evaluations and executions. For

example, “when(A1.isStopped()){A1!restart()}”

listens to the remote system represented by A1 and executes

when that system is stopped externally.

Iteration, a pain point for programming languages, can be

easily supported in A1 through aggregate operations, and

recursive conditional constructs. For example, to reset a

number of servers in cells A1 through C5 in A1, one would

simply write “{(A1..C5)!reset()}”. If the number of

objects to iterate on is unknown at code time, objects can be

collected in a Collection object and methods can be exe-

cuted on all elements at once by invoking the method on the

collection. For conditionally bounded iteration, A1’s event-

based approach provides a simple solution through self

triggering when() constructs, e.g.:

when (A1.getDiskUtilization() > 0.9) {
A1!compressDisk(0.2) }

It is worth mentioning at this point that A1 has a multi-

threaded engine that manages event queues properly for

long-running tasks that are typical in system administration.

Web portal-based collaboration support

To support collaboration between sysadmins, A1 spread-

sheets can be deployed as portlets in a J2EETM-based web

portal. In the web portal, administrators can execute tools

deployed by their colleagues within their web browsers just

like any other vendor-supplied portlets (as server-based

portlets rather than as applets that run locally). The web

portal approach greatly helps shared situational awareness,

as different sysadmins can see the same view of the data.

Tools deployed are stored in a shared tool repository, which

can be used for customization. Tools deployed as portlets

contain an “Edit” button that launches A1 development

environment. Once the sheet is updated it can either replace

the existing tool, or be saved under another name, and be-

come immediately available for use as a web portlet.

When a sheet is deployed to the portal and running in a web

browser, objects are rendered and interacted with using the

HTML form-based interactors. In this case, spreadsheets

are rendered such that tool implementations are hidden and

the tools look no different than any other portlet applica-

tion. To accomplish this, when rendering the portlet cells

that contain code are hidden to the user. Users can also ex-

plicitly hide cells if they prefer to do so.

One of the challenges in the web portlet implementation has

been the need to support vastly different interaction models

such as the HTML form-based interaction and event-based

Java/Swing GUI interaction using a single language and

model. In Swing applications users can interact with graphi-

cal user interface widgets that can immediately generate

events and cause objects to be rendered to reflect changes.

In the HTML form model, input elements are contained in

forms that are submitted and processed by a web server.

The difference is that in the web model users can make

multiple changes on the form (such as entering text into

“text” input elements) and submit the form using a button

on the form, to minimize round trips. A1 handles these two

different models uniformly through the use of platform in-

dependent interactors as discussed earlier and through

“batched propagation”. Batched propagation essentially

registers the current values of all “delayed” input elements

(such as text input elements) on a portlet and upon interac-

tion with an element that causes a server request it proc-

esses all delayed input elements first before processing the

element that initiated the request. This way A1 accommo-

dates HTML form based interaction much like the Swing

GUI event model.

EXAMPLE: CONNECTION MONITOR AND MORE

We now illustrate A1 through examples. We first consider

the script Rob and Jack worked on and then extend the ex-

ample to show how other features of A1 offer enhanced

usability and power to sysadmins. Rob’s script was in-

tended to monitor the number of connections from the http

server. Essentially his script executed the UNIX shell com-

mand “ps –ef|grep http|wc –l” every two seconds

and output the result along with the current time.

In A1, Rob can start by creating an SSH connection to the

server— say in cell B1—with parameters specifying server

address, login, and password. To repeatedly execute the

shell commands, he then creates a Clock in cell A1, with a

frequency of 2 seconds. Lastly, he enters code in B2 that

executes the shell command on the server and puts the re-

sult in B3 (See Figure 1):

B1: SSH(“server”, “login”, “pwd”)
A1: Clock(2)
B2: on (A1) {B3 = B1!execute(“ps –ef |grep

http|wc –l”)}

The SSH object in cell B1 can be created by simply select-

ing cell B1 and clicking the SSH button in the toolbar, and

entering the address, login, and password. For the sake of

simplicity here password is embedded in the code. A more

security-aware tool would probably ask the user for the

password via a password field in a cell. Here, the SSH ob-

ject is rendered as text, whereas the Clock object is ren-

dered using a flashing icon with a text of the current time.

As Rob enters this “program” into the spreadsheet, he can

see each cell functioning independently and can correct any

215

errors as he incrementally builds the code. He sees the ac-

tive SSH connection in B1, the ticking Clock in A1, and

the automatically updating value in B3.

Rob can also make use of simple point-and-click capabili-

ties to refer to cell objects and their methods as he writes

the code. For example, the SSH object has a menu listing its

available methods (e.g. execute), which can be accessed

with a right-click on the object and inserted into the code.

Use of point-and-click to develop code reduces the risk of

syntax errors. Spreadsheets offer many other advantages to

novice programmers, such as deferred variable naming,

simplified input and output through tabular layout, natural

control flow through events, and incremental code devel-

opment. Rob would not need to worry about giving names

to data either (though A1 supports user-defined cell

names)—it is just a matter of putting information some-

where on the sheet. The tabular layout too makes input and

output easy. Rob would not need to use explicit looping

constructs to repeat execution, since it is all driven through

events. Another major factor in ease of use is the ability to

develop tools incrementally and interactively.

Though this example demonstrates what Rob wanted to

accomplish in the crit sit, we can easily extend it to tie data

to graphical output:

A10: TimePlot()
B4: on (B3) { A10!add(“http”, B3) }

A TimePlot is an object that produces an X-Y plot where

the X-axis shows the time a point is added. B4 is another

example of event-driven procedural code. Each time there

is a new value in B3, it is added to the plot with a current

time stamp to the line titled “http” (Figure 1).

The tool developed can be deployed as a portlet, where it

can be run for shared use and for further modification by

Rob’s colleagues. For example, it would be natural for Jack

to update Rob’s tool to include the application server’s

number of connections in the same plot. This in fact was a

major issue in the crit sit, i.e., effectively comparing the

number of connections from these two servers.

Objects such as SSH allow users to connect to remote serv-

ers, perform operations, and display results in A1 for fur-

ther processing. A1 supports a number of other

management APIs but SSH is particularly useful as it pro-

vides a bare minimum access to a large variety of servers.

Additionally, it can be readily used to migrate or invoke

existing scripts on servers, relatively easily, exposing only

data and control needed in the new tool. This way system

administrators can still use their shared portlet-based work-

space to access and run their legacy scripts.

Figure 1. An HTTP con-
nection monitoring tool
created using A1. First,
an SSH connection is
created in cell B1. A
Clock in cell A1 is set to
trigger code in cell B2 to
repeatedly execute the
necessary commands to
retrieve the number of
http connections, which
is reported on cell B3. A
plot in A10 is also up-
dated with new data from
B3 regularly showing the
number of connection
graphically.

216

To access the number of connections from the application

server, Jack would need to use JMXTM (Java Management

Extensions), which is another system management API that

A1 supports. JMX provides richer functionality than SSH,

through its MBeans (management beans) that represent

components with properties to query and methods to in-

voke. As in the previous case, Jack would simply click on

the toolbar to create a JMX connection to talk to the appli-

cation server, get the number of connections from a JMX

MBean called “AppServer”, call the getConnection-

Count method, and finally add the number to the plot under

the title “appsrv”:

C1: JMX(“server”, “login”, “pwd”)
C2: = C1.getResource(“AppServer”)
C3: = C2.getConnectionCount()
C4: on (C3) {A10!add(“appsrv”, C3)}

Note in this case that unlike SSH, JMX uses a push model,

where the data are simply pushed into the spreadsheet, up-

dating the value in B3. Here, the user did not even have to

create a timer to drive the command execution.

Once Jack saves the tool to the same repository, it becomes

immediately available on the portal workspace (Figure 2.)

showing data from both servers on the same plot.

Other changes to the tool can be made equally easily. For

example, it probably makes sense in the crit sit case to no-

tify Rob when the number of connections reaches a certain

level. A1 provides a mail service that can connect to an

SMTP server and send emails:

D1: MailService(“server”)
D2: when (B3 > 100) { D1!sendMail(“from”,

“to”, “alert!”, “check http server”)
}

One simple generalization of the tools would be to create

text fields to allow users to enter server addresses, login,

and password and add a buttons to clear the plot:

B1: SSH(B5, B6, B7)
B5: TextField()
B6: TextField()
B7: TextField()
B8: Button()
B9: on (B8) {A10!clear()}

As shown, A1’s object-based approach and event-driven

procedural code allow sysadmins to work effectively. With

the level of abstraction appropriate to the tasks of system

administration, sysadmins can use a variety of objects in a

single sheet, and interact with multiple remote systems in an

integrated manner. The portal deployment of tools enables

collaboration not only in data sharing but also in tool de-

velopment.

Figure 2. The HTTP
connection monitoring
tool updated to display
connections from the
application server as
well, shown as a port-
let in the admin portal
workspace.

217

Figure 3. A participant’s implementation of the second tool, showing server status and monitoring controls, disk utiliza-
tion visualizations, and code blocks including automatically switching log disks, starting a tape backup, restarting the
http server, and notifying a sysadmin through email.

USABILITY STUDY

We conducted a preliminary usability study of A1. Our

goals were to see (1) whether sysadmins and others could

use A1 to develop reasonably complex tools given little

training, and (2) what kinds of errors would be made so that

we might effectively target modifications to the interface,

language, and model.

Method

Twelve participants, seven professional sysadmins and five

professional programmers, all casual spreadsheet users,

participated in the three-hour usability study. Of the seven

system administrators, two had more than four years script-

ing experience, and the rest had either none or little script-

ing experience (less than 2 years).

First, participants received a self-paced tutorial of the A1

programming language and user interface (which typically

took about 30 minutes). Second, participants practiced us-

ing A1 by developing a simple tool based on explicit step-

by-step instructions (also about 30 minutes). Third, partici-

pants were asked to develop two system administration

tools, one based on the other, given only descriptions of the

tools’ behaviors. Finally, an interview was conducted with

participants to learn more about their experiences.

The first tool was a log-space-monitoring and backup-

automation script for an http server. The programming task

included querying the http server for its current log disk,

querying the file system for disk utilization of the log disk

(e.g. free vs. used), registering listeners to monitor disk

utilization, notifying the system administrator through email

when disk space is approaching full, and stopping http

server and starting backup on the disk when it’s full. The

second tool extended the first one to switch log disks

automatically when two disks are available on the file-

system (Figure 3).

Results and Discussion

In all, five of the twelve participants completed both tools

in the allotted time. Three completed only the first tool,

while the remaining four only completed part of the first

tool. Our detailed analysis of the first tool indicates that on

average, participants completed 79% of the required func-

tionality with no error, when measured by the number of

particular objects, expressions, and code to be written is

considered. Of the remaining functionality 6% contained

errors, and 15% was missing. Given the complexity of the

tools and the limited time to learn a new language and envi-

ronment and develop the tools, the results are encouraging,

especially since the tool they developed is a real tool that

they could use in their day to day work.

Success was partly related to prior programming or script-

ing experience. Four of the seven with experience com-

pleted both tools; the remaining three completed only the

first tool. One participant with little scripting experience

completed both tools. Because the target users of A1 are

mainly sysadmins who have some scripting experience (i.e.,

they already write scripts regularly), the results suggest our

target sysadmins will do reasonably well with A1.

Note that both tools were quite sophisticated in complexity

(requiring between 35 and 45 cells with objects, code, and

expressions). On average, 36% of the code had to do with

system interaction, 21% with user interface, 15% data pres-

entation, and 28% with data processing. When examined

by function, most participants had few or no problems cod-

ing user interface and data presentation, whereas system

interaction and data processing had relatively more errors

(Figure 4).

Our analysis of errors indicated that about half of the errors

were in fact not harmful---in the sense that they were either

redundant or did not affect the functionality of the tool,

218

such as a wrong title on the utilization pie chart. Errors that

affected functionality included problems in event sequenc-

ing (27%), missing triggers (20%), and incorrect use of the

APIs (20%) (Figure 5.)

Our main interest in doing the study was to gain some un-

derstanding of programming errors in A1, particularly those

that might be barriers for users. Like Ko and Myers [12],

we found users with little scripting experience had prob-

lems with knowledge of and attention to language con-

structs (important for the event-based model) and libraries

(important for the object-based approach). For instance,

some of these participants interpreted the on() construct as

a means to perform actions on objects (e.g.

<cell>.<method>()) as opposed to the intended mean-

ing of registering a listener of events on objects and then

performing consequent actions (e.g. on (<cell>) {

<commands> }). There were also errors in which partici-

pants neglected to specify the object to perform actions on

(e.g. <method>() rather than <cell>.<method>()).

Participants with little scripting experience also made stra-

tegic errors in implementing algorithms, though incremental

development mitigated this to some extent. In fact, many

users commented favorably on the incremental and inter-

preted nature of development in A1. One said, “It allows

me to do things in my own order. I can refer to a non-

existing object. I know I’m going to create the object next.”

Another said, “The fact that I can interact with my systems

in real time in the spreadsheet that alone is pretty cool.”

And another added that building tools this way was “the

quickest live application [I] ever made”.

Event-based programming was more popular among novice

than expert script developers. Whereas expert script devel-

opers had a tendency to put all logic into one cell with se-

quences of actions, novices preferred to break up com-

pound statements and then connect them, as one put it: “I

don’t have a clear picture of how the final result would be

like. I simply started by putting down things that I can han-

dle, connect them, and make sure they work. […] It allows

me to build things incrementally.”

Some of our other findings mirrored those of other spread-

sheet studies [18]. In particular, we saw problems of wrong

cell references and unexpected formulas resulting from

copy and paste.

Based on these results, we are revising the language of A1,

particularly on constructs for event listening and process-

ing, and by providing user interfaces for API browsing to

make the environment more programmer friendly. How-

ever, overall we are pleased to see that the extension of the

spreadsheet language was adopted pretty well, resulting in

very few errors (6%).

CONCLUSION

A1 is a spreadsheet-based workspace meant to help system

administrators manage large computer systems. It was de-

signed to address system administrators’ needs for integra-

tion, collaboration, and customization in building their own

tools. A1 extends the spreadsheet metaphor through an ob-

ject-based approach and an event-based approach to pro-

vide more power and usability. Through the object-based

approach, system administrators can build tools that con-

nect to remote systems, inquire about system status, and

control multiple systems in an integrated manner. The

event-based approach takes spreadsheets further into the

realm of programming, enabling rich flow of control with

the right balance of procedural and functional constructs.

Though a more detailed analysis of errors and barriers is yet

to be done, our preliminary usability study suggests that

sysadmins with some scripting experience can use A1 to

develop sophisticated tools in a relatively short time. At this

stage we preferred to conduct a usability study as opposed

to a user experiment against one of the scripting languages

because it would be extremely hard to control variables.

Also our goal is to support tool development for web-based

system administration and we know for a fact that majority

of system administrators do not have such experience.

Based on preliminary findings A1’s design is also in line

with previous studies of programming languages [16],

which show that users prefer event-based over sequential

programming models, aggregate operators over iteration

(A1 supports both), and graphical layout for depicting over-

Code Completeness by Function

0

20

40

60

80

100

120

System Interaction Presentation Data

Processing

Area

P
e
rc
e
n
t Missing

Error

Correct

Figure 4. Analysis of completeness by function.

Error Types

20%

13%
20%

27%

7%

13%

Missing Trigger

Wrong Cell Reference

Wrong Trigger

API Problem

Event Sequencing

Arithmetic Error

Figure 5. Analysis of functional error types.

219

all program structure with text to describe actual actions

and behaviors (spreadsheet layout accommodates both).

Much remains to be seen about the acceptability of A1. We

believe A1 addresses most of the needs, concerns, and pref-

erences of system administrators, including the preference

for command-line interaction. To learn more, we are cur-

rently conducting field studies of A1 in use at real-world

system administration work locations. In fact for more than

a few months we have been conducting longitudinal studies

of A1 in a number of field deployments. So far we collected

a lot of valuable requirements, such as security, access man-

agement, etc. and we are happy to see a lot of interest in A1

as it is being put to test in the real world. We expect to pro-

vide support for a fine granularity access and update

mechanisms, where administrations would broker for

read/write rights to parts of the code. We plan to conduct

further studies on the reusability of A1.

ACKNOWLEDGMENTS

We thank the system administrators who participated in our

field studies and in the preliminary study of A1 for their

time and their thoughtful suggestions. We also thank Leila

Takayama for her contributions to the field study.

REFERENCES

1. Ambler, A. Forms: Expanding the Visualness of Sheet

Languages. Workshop on Visual Languages, (Linkop-

ing, Sweden, 1987), 105-117.

2. Barrett, R., Kandogan, E., Maglio, P. P., Haber, E. M.,

Takayama, L. A., Prabaker, M. Field Studies of Com-

puter System Administrators: Analysis of System Man-

agement Tools and Practices. Proc. CSCW 2004.

3. Barrett, R., Chen, M., & Maglio, P. P. System Adminis-

trators are Users, Too: Designing

Workspaces for Managing Internet-scale Systems,

Workshop held at CHI 2003, Ft Lauderdale, FL, 2003.

4. Burgess, M. Cfengine: a site configuration engine,

USENIX Computing systems 8, 3, (1995).

5. Burnett, M., Atwood, J., Djang, R. W., Reichwein, J.,

Gottfried, H., Yang, S. Forms/3: A first-order visual

language to explore the boundaries of the spreadsheet

paradigm. Journal of functional programming 11, 2

(March 2001), 155-206.

6. Casimir, R. Real Programmers Don’t Use Spreadsheets.

ACM SIGPLAN Notices 27, (June 1992), 10-16.

7. Clack, C., Braine, L. Object-oriented functional spread-

sheets. Proc. 10th Glasgow Workshop on Functional

Programming (GlaFP’97), (September 1997).

8. Du, W., Wadge, E. An intentional language as a basis of

a 3D spreadsheet design. Proc. ICCL ’88, IEEE Press

(1988), 2-9.

9. Hudson, S. User Interface Specification Using an En-

hanced Spreadsheet Model, ACM Trans. On Graphics,

(July 1994), 209-239.

10. Hughes, C., Moshell, J. Action Graphics: A Spread-

sheet-based Language for Animated Simulation. Visual

Languages and Applications (T. Ichikawa, E. Jungert,

R., Korfhage, eds.) Plenum Publishing (1990), New

York, NY, 203-235.

11. Joy, William. An introduction to C Shell.

12. Ko, A. J., and Myers B. A. Development and evaluation

of a model of programming errors. IEEE Symposia on

Human-Centric Computing Languages. (Auckland,

New Zealand, 2003), 7-14.

13. Levoy, M. Spreadsheets for Images, Computer Graph-

ics 28, (1994), 139-146.

14. Microsoft Corp, Microsoft Excel Users’ Guide, Red-

mond, WA.

15. Myers, B. A., Graphical Techniques in a Spreadsheet

for Specifying User Interfaces. Proc. CHI ’91, ACM

Press (1991), 243-249.

16. Myers, B. A.., Pane, J. F., Ko, A. Natural Programming

Languages and Environments. Communications of the

ACM 47, (September 2004), 47-52.

17. Nardi B. A Small Matter of Programming: Perspectives

on End User Computing. MIT Press, Cambridge, MA,

USA, 1993.

18. Panko, R. What We Know About Spreadsheet Errors.

Journal of End User Computing 10, (1998), 15-21.

19. PIKT, Problem Informant/Killer Tool, pikt.org

20. Smedley, T., Cox, P., Byrne, S., (1996). Expanding the

Utility of Spreadsheets Through the Integration of Vis-

ual Programming and User Interface Objects, Proc. AVI

’96, Gubbio, Italy, May 27-29, 1996, 148-155.

21. Spenke, M. and Beilken, C. A Spreadsheet Interface for

Logic Programming. Proc. CHI ’89, ACM Press

(1989), 75-80.

22. Stadelman, M., A spreadsheet based on constraints. In

Proc. UIST ‘93, ACM Press (1993), 217-224.

23. System Administrator Guild (SAGE) Salary Surveys.

Available at http://www.sage.org/salsurv/ .

24. Wack, A., Partitioning Dependency Graphs for Con-

current Execution: A Parallel Spreadsheet on a Realis-

tically Modeled Message Passing Environment, Ph.D.

Thesis, Department of Computer and Information Sci-

ences, University of Delaware, 1995.

25. Wagner, J., A One-stop Console for Administrators.
http://www.internetnews.com/dev-news/article.php/3484246

26. Wilde, N. Lewis, C., Spreadsheet-based Interactive

Graphics: From Prototype to Tool, Proc. CHI ’90,

ACM Press (1990), 153-159.

27. Yoder, A. G., Cohn, D. L. Real spreadsheets for real

programmers. Proc. ICCL ‘94, IEEE Press (1994), 20-

30.

220

