
67

Chapter 6

Case Studies of the Model-Based Approach

6.1 Introduction

At present, we have used OPOSSUM with the Relational, MOOSE, and E-R data models, in each case

using a variety of visual models and metaphors. The visual model of graphs has proved to be meaningful for all

three data models. We have also used OPOSSUM beyond schema visualization, as the core of query and object

visualization tools for ZOO. This section describes how OPOSSUM can be used for many kinds of schemas

and other data. Special attention is given to how OPOSSUM can be used to support abstraction.

OPOSSUM is currently used by scientists in Biochemistry and Soil Sciences to design schemas for their

databases or experiments. The feedback in all cases has been very positive, especially with respect to

OPOSSUM's ease of use: people are able to learn the system and then organize and layout large schemas with

hundreds of classes within a few hours. This informal feedback from our users has proved very valuable; as our

user base expands we intend to do more organized usability assessments to better tailor the operation of

OPOSSUM to its intended users.

Critical Ht

Min LAI increment

Layer Values

Num Values Layer Values

Num Values

No. Lay Abv Cpy{}

No. Lay Below Cpy{}

Max No. Layers

Plant()

Min No. Layers

depth values

Layer Depths{}

Soil()

No. Depths

Ref. Depth

Layers()

Convergence Code

BDIR code

CUPID INPUT ()

Soil Characteristics()

Structure()

structure bulk density

Texture{{}}

soil
silt

clay

quartz

Air Entry Pot.

Water Prop.()

Sat. Cond
B Power

rad. Prop.()

Emissivity Soil Reflect.()

Thermal

VIS
NIR

Initial Conditions()

Amt Water

Plant()

Physiology{{}}

Water Stress()

Low Leaf Pot High Leaf Pot Fixed Temp

Plant Type

Root Res.

RXCHAM

ConMin

BKV

Stem Close VPD

Stomata()

FS

Cut Water Cond

Co2 ratio

Max Leaf Water

Rain Intercept()

Fram Stem Flow

Frac Max Leaf Wetness

Leaf Angle Dist.()

Num Angle Classes

Fract/Class{}

Values

Sph Dist

M Mu Beta

Angle Code

M Nu Beta

No Leaf Angle Classes

NIR

VIS

Thermal

Leaf Reflect.()

VIS

NIR

Thermal

Leaf Trans.()

Emissivity

Rad. Property()

Architecture()

No Plant/ m2

Leaf Diameter

Clump Factor

Leaf/Root Area()

No. Julian Day Values{}

Days

Coeffs

Root Dept Coef.[]

LAIs

Fract Ht Low LAI[]

Areas

Total Leaf Area[]

LAIs

Fract. Ht. Max. LAI[]Hts

Canopy Ht.[]

temps

water content

Icumdy

Icumdy[]

Water Cont.[]

temp[]

Soil()

Environment Data{}

Air() FACT IR

CO2

Year

Solar RAd.[]

Rad Values

Values

Wind[]precips

Precip.[]

temps

 Temp.[]
codes

Irr Code[]

press.

Vap Pres[]

Program Control()

Printout Codes()

NonLayer Printout Codes()

Num Variables

Num Values Values

Index{}

Num days for daily I/P

Num days for sim

Days For Printouts()

Num Days

Layer Printout Codes()

Days{}

Day No

Angles

Num Angles
Num Angles Angles

Num Angles Angles

No. Azimuth Angle{}

BDIR View Variables()

Princ Plane Code

Zen. P.P. Angles{} Zen. Angle{}

IDAY{}

days

IHR{}

hours

Figure 6.1: The input of the Cupid simulation model as a MOOSE schema, created by OPOSSUM.

68

6.2 Cupid, MOOSE, and a Graph Visual Model

A group of soil scientists has used OPOSSUM to layout a MOOSE schema describing the parameters of

Cupid, a FORTRAN simulation model of plant growth [IL92, ILH92]. The input part of the Cupid schema

alone has 159 classes (see Figure 6.1). The visual model is that of a directed graph, where Nodes and Edges

represent classes and relationships, respectively, Node shape and a text field represent class kind, and the Edge's

line pattern indicates the type of the relationship. The tool has brought substantial improvements in the

scientists' work. Before OPOSSUM, the soil scientists' only reference to Cupid was the input data file to the

Fortran program, which had grown increasingly fractured and confusing over the years. They now use the

visual schema of Figure 6.1 as their reference in thinking about the model, planning experiments, and

explaining experiments to other scientists.

6.3 A Relational Schema as a Graph

Another group of scientists, working on NMR research, have used OPOSSUM to develop a very large

Relational schema (over 250 tables and more than 2000 attributes) for describing their experiments. They have

used another graph-based visual metaphor, with rectangular relation Nodes, oval attribute Nodes, and vertical

placement representing relation-attribute relationships. In addition, primary keys are captured by a darker color

and foreign keys relationships are represented as Edges. An example of a small piece of this schema is shown

in Figure 6.2. The NMR researchers have found OPOSSUM very useful in helping them design their large

schema since it enables them to see its overall structure and easily navigate around it.

Derived_structure_features

Feature_instancesChem_shift_2nd_struct_derivation

J_value_2nd_struct_derivation

NOE_2nd_struct_derivation
Feature_prediction_value_errorreal

Feature_prediction_valuereal

BMRB_atom_grp_numberint

Derived_feature_instance_IDint

Derived_feature_contentRel

Derivation_IDint

Feature_type_IDint

Derived_feature_instance_IDint

Substruct_component_IDint

Molecule_IDint

Data_group_IDint

Derived_struct_featuresRel

Standard_value_group_IDint

Output_group_IDint

Shift_IDint

Derivation_IDint

Chem_shift_2nd_struct_derivationRelChem_shift_2nd_struct_input_groupsRel

Input_group_IDint

Input_group_IDint

Chem_shift_2nd_struct_output_groupsRel

Output_group_IDint

Chem_shift_2nd_struct_IDintData_group_IDint

J_2nd_struct_IDint

J_value_IDint

Derivation_IDint

J_value_2nd_struct_derivationRelJ_value_2nd_struct_input_groupsRel

Input_group_IDint

Data_group_IDint

J_value_2nd_struct_output_groupsRel

Output_group_IDint

Output_group_IDint

Input_group_IDint

NOE_2nd_struct_IDint

NOE_IDint

Derivation_IDint

NOE_2nd_struct_derivationRel

Data_group_IDint

NOE_2nd_struct_input_groupsRel

Input_group_IDint

Output_group_IDint

Input_group_IDint

NOE_2nd_struct_output_groupsRel

Output_group_IDint

Figure 6.2. Part of the NMR Relational schema.

69

Has−Part TextureTo
Has−Part rad. Prop.To
Has−Part StructureTo

Has−Part StructureFrom

Has−Part TextureFrom

Has−Part Water Prop.To

Has−Part Water Prop.From

Has−Part IcumdyTo
Has−Part Water Cont.To
Has−Part tempTo
Has−Part Environment DataFrom

Has−Part integerTo As No. Depths
Has−Part realTo As Ref. Depth
Has−Part Layer DepthsTo

Has−Part PhysiologyFrom

Has−Part LayersFrom

Soil − ()

Soil Characteristics − ()

Roughness − P

Sand − P

Sat . Cond. − P

Soil − ()

Root Resistance − P

Figure 6.3. Part of the Cupid schema, as a textual list.

6.4 Other Visual Models and Other Data

While the two previous examples used visual models based on directed graphs, Opossum is capable of

supporting other types of models. One example is containment for expressing parent-child relationships,

something used in Grouping (see Section 6.6). Another example is textual lists, whose linear nature allows

them to be sorted. Figure 6.3 shows a portion of the Cupid schema visualized using a textual list visual model,

sorted by class name. This visual model and metaphor is basically a 2-level outline, representing MOOSE

classes as MainPoints, and relationships as SubPoints. MainPoints are pairs of labels with a fixed X location

and free Y location. SubPoints include labels beneath and to the right of both the source and the destination of

the Relationship. Constraints ensure placement of the SubPoints below the MainPoints that they connect.

The variety of visual models for schemas also prove useful for queries and data. Directed graphs work well

for queries; queries can be considered as pieces of schema with various qualifications and operators attached.

To visualize them, one only needs to extend a visual model for schemas to include representations for the

qualifications and operators. In a similar manner, schema visualizations can be used as a template for

representing instances of data. Such a template works well for browsing, but is less useful in showing many

instances at once (unless one has a very good automatic layout program). To show many instances at the same

time, one can use a textual list, or design a visual model especially for the data. For example, the visual model

and metaphor shown in Figure 6.4 captures x-y charts by mapping attributes of the data to position in the plane,

and shape of chart ticks.

70

200 400 600

400

200

Figure 6.4. A sample visual model and metaphor for representing data as an X-Y chart.

The data model has one concept, the tuple, with two integer attributes, and a third attribute with a range of four

values. The visual model and metaphor map tuples to a visual concept called a point; the integer values of the

tuple are mapped to the X and Y locations of the point, and the other attribute is mapped to one of four shapes.

The axes and ticks on the axes only exist in the visual model, and thus represent aesthetic information. Figure

6.4 demonstrates how OPOSSUM can be used to visualize information that is very different from the directed-

graph-like structures seen in the other examples in this thesis.

6.5 A Case Study of Model Creation: The Entity-Relationship Model

As a test of the flexibility of OPOSSUM, the system was used to create models and a metaphor for working

with Entity-Relationship diagrams. The instigator was a professor in the Computer Sciences department at the

University of Wisconsin-Madison who wished to have a tool for students in introductory database courses.

Previously this professor had hired a student to create a custom E-R tool using tcl/tk, but that tool never reached

a stage where it could be used due to problems capturing the behavior and appearance of E-R diagrams. Using

OPOSSUM, however, a working tool was created within 10 hours (including several hours fixing bugs brought

out by the particular needs of the E-R model). After receiving feedback from the professor, two more hours

were spent to remove a few remaining deficiencies.

An example schema created using the E-R model in OPOSSUM is shown in Figure 6.5. The visual model

is fairly standard, with rectangular entities, oval attributes, and diamond relationships. Notable features of this

model are aggregates and is-a relationships. Aggregates allow a relationship and all the entities associated with

it to be considered a single entity that may be a part of other relationships. Aggregates are indicated by a box

with dashed borders surrounding the relationship, its participating entities, and all of their attributes. In Figure

6.5, the “Works-On-Project” relationship is aggregated.

71

ProjectName

Address

Name

Name Specialty

G.P.A. Tenure?

Works−On−Project

Part−Of−LabWorks−In−Lab

IS−A
Supervises

Scientist EntityName

Laboratory

Grad Student Professor

Figure 6.5. A sample E-R schema created using OPOSSUM

Is-A relationships are used for describing situations where different entities have common properties. In the

visual model, they are represented as triangles with a marked edge leading to the parent entity, and unmarked

edges leading to each child. Figure 6.5 shows that both Grad Students and Professors can act as Scientists

working on a project, but the two entities have different attributes, and only a Professor can supervise a project

and all the scientists who work on it.

This implementation of the E-R model using OPOSSUM highlights both the advantages and disadvantages

of the system. On the positive side, it was possible in a very short time to create a tool supporting complex

behavior (something that had been difficult to do with a custom tool). On the negative side, it highlighted three

important limitations of our approach:

• The underlying formalism has a single-valued nature: concepts have a fixed number of attributes, and

attributes may only have single values. Because of this, in order to support n-ary relationships, it was

necessary to divide the relationship into two different concepts: the relationship itself, and the

connection between a relationship and an entity. On the screen, the relationship diamonds are separate

instances from the arcs connecting them to entities, and they must be created separately. This makes

working with the model less natural that it might otherwise be.

72

• The current implementation of constraints does not support quantification. The professor requesting this

tool wanted a different appearance for arcs and relationship boxes between weak entities and their

owning entities. Quantification was needed because the relationships and arcs should base their

appearance on whether the owner attribute of the entity at one end of the relationship was the same as an

entity at the other end. Lacking quantification, constraints could not be written to ensure this. As a

result, users must change the appearance manually in order to have a correct schema.

• When editing attribute values, the user is presented with a menu listing the internal names of all the

attributes. These internal names are originally specified in the meta-creator model description, and

while they are suitable for their role there, they are not the most informative for the average user. It

would be nicer if there were additional names for attributes for use in the Edit menu (and other places

where the user is shown the name of an attribute).

None of these problems prevented the tool from being used, or from satisfying the needs for an E-R diagram

editing tool, but they do make this tool more cumbersome to use. There is nothing about the underlying

formalism that prevents changes to fix these problems, however, so in the future OPOSSUM should overcome

these limitations.

6.6 A Case Study of Layout: Implementing Grouping with OPOSSUM

In this section, we focus on how OPOSSUM supports abstraction using the layout techniques described in

section 4.7, illustrating in the process several features of the system. The ease with which this is done provides

a case study of the flexibility and extensibility of our tool.

6.6.1 Problem

During schema exploration, a user often wants to see both the high-level structure of schemas and their fine

details. The Grouping approach addresses this problem through visual abstraction: the addition of a visual

construct called a Group which clusters subgraphs and allows the subgraph to either be seen in its entirety, or

represented as a single visual item. As an example, Figure 6.6 presents the same schema as in Figure 6.1, only

partitioned into rectangular groups. Figure 6.7 shows the schema at its highest level of abstraction, with only 11

groups and nodes. Finally, Figures 6.8 and 6.9 show the internal structure of one and two top-level groups,

respectively, allowing study of their details.

During a session of schema exploration, a user may focus on different parts of the schema and view them at

several levels of abstraction. This should be achievable by simply collapsing or expanding groups, e.g., moving

from Figure 6.7 to 6.8 and then to 6.9 should involve expanding one group and then collapsing it and expanding

two others, respectively. Moreover, each group expansion or collapse should require very little user interaction,

e.g., a single keystroke or mouse click.

Such ‘automatic’ switching back and forth between two visualizations can cause layout problems. When a

group collapses, e.g., from Figure 6.8 to 6.7, the entire graph should move closer together so that there is better

utilization of the freed-up space. Likewise, when a group expands, the rest of the graph should move away to

make space for the group's expanded representation; otherwise, there may be node/group overlaps with

undesirable semantics or aesthetics. Managing such layout side effects caused by changes in the group

footprints is a key challenge for any system that implements Grouping.

73

Program Control Classes

BDIR View ClassesPrintout Classes

ELabel.Text

Leaf Angle Classes Radiative Properties Leaf Root Classes

Physiology Classes

Stomata

Rain Intercept

Water Stress

Environmental Data

Air Data

Soil Data

Time Classes

Soil Characteristics

Structure

ELabel.Text

Water Properties

Radiation Properties

Layers

Soil

Plant

Initial Conditions()

Amt Water

Angles
Zen. Angle{}Zen. P.P. Angles{}

Princ Plane Code

BDIR View Variables()

No. Azimuth Angle{}

AnglesNum Angles

AnglesNum Angles
Num Angles

Day No

ValuesNum Values

Index{}
Num Variables

NonLayer Printout Codes()

Printout Codes()

Days{}

Layer Printout Codes()

Num Days

Days For Printouts()

Num days for sim

Num days for daily I/P

Convergence Code

BDIR code

Program Control()

No Plant/ m2

Leaf Diameter

Clump Factor

Architecture()

Values

Fract/Class{}

Num Angle Classes

No Leaf Angle Classes

M Nu Beta

Angle Code

M Mu Beta

Sph Dist

Leaf Angle Dist.()

NIR

VIS

Thermal

Leaf Reflect.()

Emissivity

Rad. Property()

Leaf Trans.()

Thermal

NIR

VIS
No. Julian Day Values{}

Leaf/Root Area()

Canopy Ht.[]

Hts Fract. Ht. Max. LAI[]

LAIs

Total Leaf Area[]

Areas

Fract Ht Low LAI[]

LAIs

Root Dept Coef.[]

Coeffs

Days

Plant()

Co2 ratio

Cut Water Cond

FS

Stem Close VPD

BKV

ConMin

RXCHAM

Stomata()

Frac Max Leaf Wetness

Fram Stem Flow Max Leaf Water

Rain Intercept()

Low Leaf Pot

Water Stress()

High Leaf Pot

Root Res.

Plant Type

Fixed Temp

Physiology{{}}

CUPID INPUT ()

Year

CO2

FACT IR

Air()

Vap Pres[]

press.
Irr Code[]

codes

temps

 Temp.[]

Precip.[]

precips Wind[]

Values
Solar RAd.[]

Rad Values

temps

temp[]

water content

Icumdy

Icumdy[]

Water Cont.[]

Soil()

Environment Data{}

hours

IHR{}

days

IDAY{}

Soil Characteristics()

Structure()

structure bulk density

Texture{{}}

quartz
claysiltsoil

B Power

Water Prop.()

Air Entry Pot.

Sat. Cond
Thermal

VIS
NIR

Soil Reflect.()Emissivity

rad. Prop.()

Layers()

Soil()

Ref. Depth

No. Depths

Layer Depths{}

depth values

Critical Ht

Min LAI increment

Plant()

Max No. Layers

Min No. Layers
No. Lay Below Cpy{}

No. Lay Abv Cpy{}

Num Values

Layer Values

Num Values Layer Values

Soil Characteristics

Layers

Environmental Data

Time Classes

Plant ArchitecturePhysiology Classes

Program Control Classes
CUPID INPUT ()

Initial Conditions()

Plant()

Amt Water

Figure 6.6. The CUPID input schema, Grouped. Figure 6.7. The same, abstracted.

Soil Characteristics

Layers

Environmental Data

Program Control Classes

Time Classes

Plant Architecture

Physiology Classes

Water Stress

Rain Intercept Stomata

CUPID INPUT ()

Initial Conditions()

Amt Water

Plant()

Physiology{{}}

Fixed Temp

Plant Type

Root Res.

Stomata()

RXCHAM

ConMin

BKV

Stem Close VPD

FS

Cut Water Cond

Co2 ratio

Time Classes

Plant Architecture

Leaf Root Classes

Leaf Angle Classes

Radiative Properties

Physiology Classes

Soil Characteristics

Layers

Program Control Classes

Environmental Data

Soil Data

Air Data

Initial Conditions()

Amt Water

Plant()

CUPID INPUT ()

Architecture()

Clump Factor

Leaf Diameter

No Plant/ m2

Days

Coeffs

Root Dept Coef.[]

LAIs

Fract Ht Low LAI[]

Areas

Total Leaf Area[]

LAIs

Fract. Ht. Max. LAI[]Hts

Canopy Ht.[]

Leaf/Root Area()

No. Julian Day Values{}

Environment Data{}

Soil()

Water Cont.[]

Icumdy[]

Icumdy

water content

temp[]

temps

Rad Values

Solar RAd.[]
Values

Wind[]precips

Precip.[]

 Temp.[]

temps

codes

Irr Code[]
press.

Vap Pres[]

Air()

FACT IR

CO2

Year

Figure 6.8. The same, partially abstracted. Figure 6.9. The same, differently abstracted.

6.6.2 Grouping as an Example of Mixed Visual Metaphors

Grouping has already been seen in several systems, e.g., QBD* [ACS90], SUPER [AAD+94], GUIDE

[WK82] (in a limited form) and others [TWB+89]. Below we describe how it is realized using OPOSSUM,

with little effort, as an example of a mixed metaphor.

We take the typical graph visual model (Chapter 4) and introduce a new concept called a Group. In

addition to all their necessary display attributes, both Node and Group are given a ParentGroup attribute, which

takes values among the instances of Group in any schema. Also, a Group has an expanded and a collapsed

visual representation, the choice between which is controlled by the value of a Representation attribute, which

makes the resulting metaphor mixed. In the expanded representation, a Group appears as a large box with a

label at the top. In the collapsed representation, a Group appears the same size as a Node.

In addition to the above, the model has several constraints to ensure the visual integrity of a graph with

Groups, among which the most important are the following (expressed in English for readability):

• In the expanded representation of a Group, if the footprint of a Node or Group c is within the footprint of

a Group p then c is a member of p.

• In the expanded representation of a Group, all its members are visible.

74

• In the collapsed representation of a Group, all its members are invisible.

• The footprint of a Group is no smaller than the footprint of all its members.

• When a Group's expanded location changes, the locations of its members change by the same amount.

Using the layout methodology described in Section 4.7, expanded Groups, collapsed Groups, and Nodes are

prohibited from partially overlapping each other (though containment is permitted). The system is instructed to

maintain two safe layouts, one for expanded Groups and Nodes, and another for collapsed Groups.

Given the multiple representations of groups and the potential invisibility of group members, visibility of

edges becomes an issue as well. For this, the visual model is enhanced with a GroupEdge concept.

GroupEdges connect collapsed groups when those Groups have members that are connected, as for example, in

Figure 6.7. Constraints similar to the above are defined to handle the visibility of GroupEdges and regular

Edges.

6.6.2 A ‘Demo’ of OPOSSUM with Grouping

In this subsection, we demonstrate how the above visual model achieves the desired Grouping

functionality, and we describe how Grouping appears to the OPOSSUM user. The system operates as described

in Chapter 5; the schema manager reads in the appropriate model and metaphor descriptions, and the user can

then manipulate schema graphs equipped with Groups, as for example, in Figure 6.6.

Given the enhanced visual model, OPOSSUM's column of buttons will include a buttons for Group and

GroupEdge. By selecting the first of those buttons, a subsequent click starts the process for the generation of a

Group, which is the specification of a rectangle area on the screen. Again, this behavior is dictated solely by

information that exists in the visual model, i.e., the fact that the concept Group has a region with unspecified

boundaries.

Upon the creation of a Group as above, by the immediate enforcement of constraint (1) in the previous

subsection, the group members are automatically determined to be those covered by the specified area, as

expected. The new group's ParentGroup, if any, is also determined at that time. Any subsequent changes to the

membership of the group are achieved by simply moving nodes in and out of the group's boundary, again as a

result of enforcing constraint (1).

During schema creation and modification, a user may also need at some point to move a group and expect

for its members to follow along. Similarly, a user may modify the size of a member of a group (e.g., as a result

of an expansion) and expect that the boundary of the parent group will also change, if necessary, to continue to

enclose the member. The correct behavior is observed as a result of enforcing constraints (4) and (5).

Finally, as discussed above, the most critical feature of Grouping is the ability to collapse and expand

Groups. This is accomplished by changing the value of the Representation attribute of the concept Group. To

switch from one representation to the other, a user has simply to click on the group while the ‘Edit’ button is

selected, choose Representation from the appearing menu, and then modify its value to that of the desired

representation. The constraints of the model (including (2) and (3) above) will ensure that the desired

representation appears on the screen without any further action from the user. Moreover, all the layout

problems that may occur with the representation change are handled by a heuristic described in Section 4.7.

From all the above, it should become clear that OPOSSUM can be customized to provide complex

functionality like Grouping with no specialized effort, simply through the appropriate definitions of models and

metaphors. Not only is the desired appearance and behavior of Groups obtained, but most tasks involved with

using Groups can be accomplished with very few actions on the part of the user. We believe that Grouping is a

75

testament to the flexibility and extensibility of our approach to visualization.

6.6 Summary

The variety of the above examples demonstrate that OPOSSUM has the flexibility to be used as a

visualization and editing tool for schemas and many other kinds of information. Furthermore, this flexibility

has proven very helpful to the users of this system in managing large schemas.

