
1

Chapter 1

Introduction

In the history of Database Management Systems (DBMSs), interaction between computer and user has

played an important role. The incredible power of computers to manipulate data has always been limited by the

narrow channel of communication with the user; no matter how fast computers go, users are still responsible for

specifying the organization of databases, entering data, making queries, and viewing query results. The success

or failure of any DBMS depends greatly on how well its interface allows users to perform these operations.

In order to improve interaction between users and databases, there has been a trend toward interfaces that

display information in a visual (as opposed to textual) manner; these interfaces can take advantage of both the

high bandwidth available in modern bit-mapped displays, and also the human ability to conceptualize

dimensions of space, color, size, texture, and other visual attributes. Visual interfaces are also well suited to the

use of direct-manipulation, where the user can modify information through operations on its visual

representation (such as mouse clicks).

This thesis examines an important aspect of database interfaces: visualization and direct-manipulation of

schemas. Schemas are central to database interfaces because they describe the organization of the database, and

thus they are the framework with which the user understands the data. In addition, they are an ideal template for

providing context to interface operations such as queries and data specification and display. The core of this

thesis is a novel framework for describing two-way mappings between schemas and their visual presentations.

This framework provides unprecedented flexibility and customizability in producing visual representations of

schemas, and allowing the user to change schemas via direct-manipulation of these representations. This

approach has been validated through its use as the foundation for the schema design tool OPOSSUM.

OPOSSUM is the front end to an object-oriented scientific database system, and is currently in use by scientists

from several disciplines.

1.1 Motivation and Background

1.1.1 Database Interfaces

A DBMS by definition manages data, yet it must also support several kinds of interaction with the user:

users specify the schema of the data to be managed, input new instances of the data, and retrieve the data or

subsets thereof. There are several traditional text-based approaches to support these types of interaction: Data

Definition Languages (DDLs) to describe the database schema, form systems and data manipulation languages

(DMLs, such as SQL) to allow input and retrieval of data, and report generators to provide structured output of

the data. These traditional approaches have several problems, however. All are text-based, and do not take full

advantage of the bandwidth available with modern bit-mapped displays and pointing devices such as mice.

Traditional DDLs and DMLs are difficult to learn and use correctly. In addition, textual DDL descriptions are

linear, making them less well suited than two or three-dimensional displays for describing very large and/or

complex databases. The deficiencies inherent in these approaches have led to the development of visual

methods for displaying and/or specifying schemas, queries, and data. These approaches use diagrams, tables,

and icons for showing the information; some also permit the user to make changes to the information via direct

manipulation of the display. This thesis describes a novel, flexible, extensible method for creating visual

2

displays of structured information, and allowing the user to edit the information via direct-manipulation of the

display; it is discussed primarily in the context of database schemas, though this approach is also applicable to a

large extent to queries, data, and other similar information.

1.1.2 Visual Schema Management on the Desk-Top

The visual display and manipulation of schemas is an important area for current database user interfaces. In

addition to overcoming many of the limitations of textual DDLs described above, several other factors increase

the importance of visual schema management. Novice users in increasing numbers are managing their own

DBMSs, requiring more user-friendly ways to specify schemas using computers located on the desk-top. The

data in databases are becoming more complex, resulting in schemas that are more difficult to manage. In

addition, database graphical user interfaces need visual schema representations to make other database

operations (such as querying or browsing) easier; in these interfaces the schema acts as a template, allowing the

user to refer to it instead of needing to remember details of the database structure. This thesis describes a

formalism that allowed us to create a Desk-Top Schema Manager (DTSM). A DTSM is a tool intended for the

desk-tops of novice user, supporting flexible and powerful visual representation and manipulation of schemas

for the many roles they play.

1.2 Contributions of this Thesis

This research discusses improvements to the interaction between users and databases, specifically

examining how schemas are shown to and manipulated by the user. This subject has a major impact on how

well users perform all the different interactions with the database, since schemas can be used as templates for

query specification and data visualization. It also affects communication of database information between

people, because schemas provide an ideal framework for describing database contents.

This thesis provides a framework for declaratively describing the visualization of schemas, allowing

schema information to be viewed in many ways. Part of this framework is a novel approach to keeping the

layout of a schema in the same general shape as parts of the schema change in size; this approach to layout can

be used to support abstraction, whereby schemas can be shown at many levels of detail, with the schema shape

similar at all levels. This framework has been implemented as the schema design tool for a scientific DBMS

that is currently in use by several groups of scientists.

1.2.1 A Formal Framework for Describing Visual Representations

In order to provide complete flexibility in how information is shown, it is necessary to have a framework

describing the process of visualization. This thesis presents an approach to schema visualization that permits

declarative descriptions of the abstract data to be displayed, the visual elements of the display, and the mapping

between the abstract data and the visual elements. Given such external, declarative descriptions, it is possible to

have a generic visualization tool that works with many kinds of data and can display each kind of data in many

ways. In addition, the framework allows the visualization of the data to be customized and extended to suit

different users and different situations. This flexibility gives users the power to see information in varying

ways, and through that to better understand the data. The utility of this framework is demonstrated by its

implementation as part of interface to a scientific DBMS, where it is used as the core of tools for visualization

3

and specification of schemas, data, and queries.

1.2.2 Layout of Abstracted Visualizations

A common problem with viewing data structures is seeing both large scale structure and fine detail. Many

data structures are too large to be meaningfully shown in their entirety, regardless of the style of visualization.

When the whole is shown, the details are too small to be discerned, and if the details are shown large enough,

their context within the whole is not clear. A common approach to this problem is abstraction: allowing a group

of details to be seen as a single item. Abstraction has problems of its own: when portions of a display are

abstracted, the display becomes more sparse, and when details are shown, the display becomes more crowded.

Automatic layout algorithms have been used to maintain display density, but they are unstable, often moving

elements from one side of the display to the other. This thesis contains a novel solution to this problem,

utilizing user input to determine suggested locations for abstracted and non-abstracted elements of the display,

moving elements between these two locations to avoid overcrowdedness or sparsity.

1.3 Organization of this Thesis

This thesis is organized as follows: Chapter 2 discusses the history and importance of interfaces to

databases. Chapter 3 describes desk-top schema management. Chapter 4 provides a framework for visualizing

database schemas. Chapter 5 gives an overview of the OPOSSUM visualization tool, implementing the

framework described in Chapter 4. Chapter 6 presents case studies of the system in use, including a discussion

of how abstraction is supported. Chapter 7 describes related work. Finally, Chapter 8 offers conclusions and

directions for future work.

4

Chapter 2

Background and Motivation:
Database Interfaces, Past, Present, and Future

2.1 Introduction

Funk & Wagnal's Encyclopedia defines a database as “any collection of data organized for storage in a

computer memory and designed for easy access by authorized users.” The history of DBMSs has consisted of

work toward these two broad goals: improving computer data storage, and improving (authorized) user access.

In this chapter, I explore the area of database interfaces in more detail, discussing their history, current state of

the art, and the results of a survey on future directions for database interface research. This history

demonstrates the importance of visualization in current and future interfaces. The area of database interface

work is quite diverse; I do not attempt to survey all work in the area, rather my intention is to paint the “big

picture” of what database interfaces are, where they have been, and where they are going, and why visualization

is important.

2.2 A Brief History of Database Interfaces

The two goals of database systems have always been to permit computers to store a wide variety of data,

and to allow people to access that data. Access entails several different activities: describing the data to be

stored and manipulating the data (entering, querying, browsing, deleting, and outputting). These tasks have

been supported with increasing sophistication and facility over the history of databases. This history has been

shaped by the interactions of three areas: data models, which describe how a DBMS can organize information,

interfaces for data manipulation, and interface technology. Table 2.1 gives an overview of these three areas,

discussed in detail in this section.

Time Period Models Data Definition Data Manipulation Interface Technology

1960s Hierarchical
Network

Declarative
Textual

Procedural
Textual

Key Punch
Line Printer

Teletype

early ’70s Relational Declarative
Textual

Declarative, Textual
(SQL)

CRT, Keyboard

late ’70s Semantic Diagrammatic
(E-R)

Template-based (QBE)

early ’80s Deductive Direct-
Manipulation

Browsing
Diagrammatic

Bit-mapped Display
Mouse

late ’80s-
’90s

Object-
Oriented

Icons Interactive Visualization 3-D pointing devices
Virtual Reality

Multimedia
Voice recognition &

synthesis

Table 2.1. Advances in Data Models, Data Definition, Data Manipulation, and Interface Technology

5

The user interface may be defined as that part of the computer system with which a human interacts. The

common conception of a user interface is usually limited to windows and menus on a screen, or some kind of

textual language, with which users tell the computer what to do. In reality, the interface includes means of input

(e.g., tools for specification of schemas), output (e.g., tools for data display), and conceptual tools for the user.

In the case of DBMSs, the data model falls into the third category; it is a conceptual view for users of how the

database system stores information (which does not necessarily correspond with what the DBMS actually does).

While users do not interact with a data model the same way they interact with a pull-down menu, the data model

is the framework with which users can think about the data. If a data model can more naturally capture the

organization of the real world, it is easier for a designer to create a database that accurately models the data, and

that users can understand. In addition, the data model affects the functionality of data manipulation tools with

which the user does interact directly. As a result, the history of data models is an important part of the history

of database user interfaces, along with input/output tools and interface technology.

The earliest DBMSs, in the 1960s, were mainly based on either the Hierarchical or Network data models

(an excellent discussion of these models may be found in the textbook by Date [Dat77]). The Network model is

oriented toward complex interrelated data; it captures information in terms of record types and bidirectional

links between record types. Consider a database used to keep track of scientists, laboratories, and projects.

Each scientist has a name, a specialty, a lab, and a one or more projects. Each lab has a name and an address.

Each project has a name, and a lab with which it is associated. Scientists can work on projects outside of their

labs. An example of such a database organized using these records and links is shown in Figure 2.1 (it should

be noted that Network databases did not display the data as seen in Figure 2.1, rather the figure represents the

organization of the data).

Jane Biochemistry

Bob Genetics

Amy Physics

Fred Biology

1st FloorMason Lab

Hughes Lab 5th Floor

Smith Lab Basement

Cheese Biology Toaster PhysicsPencil Chemistry Opossum Genetics Moose Astronomy

Lab To Project

Lab To Scientist

Scientist To Project

Figure 2.1. A conceptual view of data in the Network model.

This example will be used throughout this section in comparing data models, data definition, and data

manipulation. There are three instances of the laboratory record type, shown in the upper left. Four scientists

are described in the upper right, and five projects are shown along the bottom. Arrows of different kinds are

used to portray the links between the various records. Figure 2.1 shows how the Network model can capture

6

many-to-many relationships, such as the fact that a scientist can work on many projects and a project can

involve many scientists.

The Hierarchical model is similar to the Network model in that it also captures information in terms of

record types, and links between record types. The difference is that in a Hierarchical schema, each record type

may be the destination of at most one link. Thus Hierarchical schemas have a similar structure to that of trees,

with root record types linked to possibly many branches, and each branch being linked to by only one root. The

Hierarchical model naturally captures hierarchical data from the real world, though it works less well with more

complexly interrelated information. Each record type can only appear once in a hierarchical schema, so the

only way to represent many-to-many relationships is by defining additional “logical” schemas that arrange the

information differently. For example, in order to capture the relationships between scientists, projects, and labs,

a hierarchical database would require two logical schemas, one to show which scientists work in a given lab and

the projects on which they work (Figure 2.2), and another to show which projects are part of a given lab and the

scientists that work on those projects (Figure 2.3).

1st FloorMason Lab Hughes Lab 5th Floor Smith Lab Basement

Jane Biochemistry Bob GeneticsAmy Physics Fred Biology

Cheese BiologyToaster PhysicsPencil Chemistry

Opossum Genetics Moose Astronomy Opossum Genetics Opossum Genetics

Figure 2.2. A conceptual view of one organization of a Hierarchical database.

1st FloorMason Lab Hughes Lab 5th Floor Smith Lab Basement

Jane Biochemistry

Bob Genetics Amy Physics

Fred Biology

Cheese Biology Toaster PhysicsPencil ChemistryOpossum Genetics Moose Astronomy

Fred Biology Jane Biochemistry Amy Physics

Figure 2.3. A conceptual view of another organization of the same Hierarchical database.

The interface technology of the 1960s provided punch cards, teletypes, and line printers as the major means

of interaction between user and computer. In many cases, “users” never came in direct contact with the

7

computer at all, instead delivering a stack of punch cards to the technicians who ran the computer, returning at a

later time to pick up line printer output. At best, users would communicate with the computer via a teletype

printing text on paper at speeds of twelve characters per second. Given the limitations of this kind of

interaction, database definition and manipulation occurred through text-based languages. An example of the

specification of a simple Network model schema appears in Figure 2.4. An example query in the Network

model language DBTG is shown in Figure 2.5, asking for the names of scientists whose specialty is

Biochemistry. (The syntax for these examples was derived from the textbook by Date, chapters 20 and 22

[Dat77].)

Schema Name Is Sci-Lab-Proj.

Record Name is Scientist;
Location Mode Is System-Default;
Identifier is ScientistID in Scientist.
02 Name ; Type is Character 25.
02 Specialty ; Type is Character 30.
02 ScientistID ; Type is Fixed Decimal 3.

Record Name is Laboratory;
Location Mode Is System-Default;
Identifier is LaboratoryID in Laboratory.
02 Name ; Type is Character 30.
02 LabID ; Type is Fixed Decimal 3.

Record Name is Project;
Location Mode Is System-Default;
Identifier is ProjectID in Project
02 ProjectName ; Type is Character 30.
02 ProjectID ; Type is Fixed Decimal 3.

Set Name is Sci-Proj;
Owner is Scientist;
Member is Project;

Set Name is Lab-Sci;
Owner in Laboratory;
Member is Scientist;

Set Name is Lab-Proj;
Owner is Laboratory;
Member is Project;

Figure 2.4. A Network model schema describing the database on scientists, labs, and projects.

8

Move “Biochemistry” To Specialty in Scientist.
NEXT. Find Duplicate Scientist.

If Notfound=“YES” GO TO DONE.
Get Scientist.
(print Name In Scientist)
GO TO NEXT.

DONE.

Figure 2.5. A DBTG Network model query to find the names of scientists whose specialty is biochemistry.

The complexity of the Network and Hierarchical models is the major source of both their advantages and

disadvantages. On the positive side, they allow users to design databases that capture intricate relationships

from the real world (the Network more easily than the Hierarchical, however). On the negative side, their

complexity limits their usability with respect to data manipulation; the vast majority of systems based on these

models only permit manipulation through “record-at-a-time” languages, where the user must write a procedural

program that iterates through records in the database. Such an approach requires the user to specify exactly how

to achieve the intended manipulation, as seen in Figure 2.5. In addition, the user is responsible for ensuring that

the manipulation program runs efficiently. It is not impossible for DBMSs based on these models to provide a

more declarative approach to data manipulation, but their complexity makes the task sufficiently difficult that

very few systems have done so.

Scientist Laboratory

Name Specialty ScientistID LabID Name LabID Address

Jane Biochemistry S37 L1 Hughes Lab L1 1st Floor

Bob Genetics S39 L2 Mason Lab L2 5th Floor

Amy Physics S32 L1 Smith Lab L3 Basement

Fred Biology S33 L3

Project WorksOnProj

ProjectName ProjectID LabID ScientistID ProjectID

Cheese Biology P11 L1 S32 P12

Toaster Physics P12 L3 S33 P11

Pencil Chemistry P13 L1 S37 P13

Opossum Genetics P14 L2 S33 P14

Moose Astronomy P15 L2 S39 P14

S32 P15

S37 P14

Figure 2.6. How data can be organized in a Relational database.

A higher-level approach to data manipulation arrived with the 1970s and the introduction of the Relational

data model. It is simpler than the Hierarchical and Network models, modelling information only as tables

(a.k.a. relations) of each record type. It is not possible in the Relational model to directly represent links

9

between record types. Instead record types must share a common field to indicate a link. Figure 2.6 shows an

example of how the same data might be arranged in a Relational database. Note how there are no explicit links.

Instead, for example, the link between scientists and labs is through common values in the “LabID” field.

This simple approach provides a great advantage with respect to data manipulation: the Relational model is

sufficiently simple that it possible to define declarative DMLs for it. Given a declarative language, users need

only specify what the result of a manipulation should look like (instead of writing a program to generate that

result). Users do not have to be concerned with the efficiency of the manipulation because the system

undertakes that task. The most common declarative DML for the relational model is the language SQL. Figure

2.7 shows the sample database defined for the Relational model using SQL. Figure 2.8 shows a sample query in

SQL.

The Relational model does have a disadvantage, however, in the area of database design. Because links

between record types are specified as values common to different tables, a Relational database must undergo a

process called normalization to ensure consistency and eliminate redundancy. This process is complex and

difficult for most average users. On balance, however, the Relational approach is better for the user, as data

manipulation is a more common task than database design. The Relational model has proved very successful,

and it still dominates the database market. The interfaces to querying and schema design could use further

improvement, however, as evidenced by the fact that as late as the mid-1990s, the database group at the

University of Wisconsin-Madison considered forming Relational queries and normalizing Relational schemas to

be sufficiently difficult areas that they were always included in the qualifying exam for database graduate

students.

Create Table Scientist (Name VarChar(25),
Specialty VarChar(30),
ScientistID Char(3),
WorksInLab Char(3));

Create Table Laboratory (Name VarChar(30),
LabID Char(3));

Create Table Project (ProjectName VarChar(30),
ProjectID Char(3),
PartOfLab Char(3));

Create Table WorksOnProj (ScientistID Char(3),
ProjectID Char(3));

Figure 2.7. A Relational schema, specified using SQL statements.

Select Name
From Scientist
Where Specialty = “Biochemistry”

Figure 2.8. An SQL query asking for the names of scientists whose specialty is biochemistry.

Two major technical advances in the 1970s were the advent of minicomputers, which helped bring users

physically closer to their computers, and the increasingly widespread distribution of video display terminals,

which permitted a marked improvement in interactivity over teletypes, punch-cards and line printer output.

10

These two developments allowed people to access their databases directly, without having to go through human

intermediaries (though the databases were usually managed by specialized database administrators). Video

terminals also helped bring about the first truly user-friendly interfaces for data manipulation: Query By

Example (QBE [Zlo75]) and CUPID [MS75]. QBE relies upon the simple, regular structures of the Relational

model to present the user with simple one or two row tables for each relation in the database. These tables act

as templates into which the user can type qualifications for different attributes. Each column is labelled, so the

user need not remember the names of all the attributes. An example of a simple QBE query on the above

database appears in Figure 2.9. CUPID takes a similar approach, allowing users to draw lines connecting one-

row tables to values indicating selections, or to each other indicating links between tables.

Scientist Name Specialty ScientistID LabID

P. Biochemistry

Figure 2.9. A QBE query to print the names of scientists whose specialty is Biochemistry.

These templates can also be constructed by the user as a means for defining database organization. The

primary advantages of QBE are that: 1) it provides labelled templates, so the user does not need to remember

the names of every attribute and can see which attributes are part of the same relation, and 2) it has a two-

dimensional syntax, so that the parts of a query can be specified in any order (unlike linear textual query

languages, which usually have a linear syntax that requires strict ordering).

The second half of the 1970s saw further improvements in data models. The Hierarchical and Network

models are limited because their complexity makes data manipulation difficult, and the Relational model has

problems because its simplicity made database design tricky. Ideally some middle ground could be found with

the advantages of both. Relational databases were more popular, so the most common approach was to extend

the Relational model enough to improve its modelling capabilities, but not so much as to lose its declarative

manipulation ability. This trend began with Semantic models in the ’70s, and continued with the Nested-

Relational and Object-Relational models in the ’80s and ’90s.

One important aspect of Semantic models is their attempt to more closely represent the real world through

the concepts of entities (items in the real world), properties of entities, and relationships between entities. This

seems a departure from the Relational model, which is based on sets of values, though the early Semantic

systems were built on top of Relational databases. The most significant of the Semantic models (with respect to

user interfaces) is the Entity-Relationship (E-R) Model [Che76]. It allows the user to specify database

organization in terms of these entities, properties, and relationships, and there is a well defined set of rules for

transforming E-R schemas into the Relational, Hierarchical, or Network model schemas. In addition, the E-R

model is significant in that it includes a diagrammatic language for specifying these schemas. E-R diagrams

consist of rectangles for entity sets, ovals for properties, and diamonds representing relationship sets, with lines

connecting the relationships to the related entities, and the entities to their properties. Figure 2.10 shows the

sample database as an E-R diagram. The characters “1”, “M”, and “N” next to the relationship-diamonds

indicate the cardinality-ratio of each part of the relationship, for example the Works-on-Project relationship has

a cardinality ratio of M:N. Figure 2.10 demonstrates the advantages of specifying a schema as an E-R diagram

over the SQL and DBTG schema specifications in showing the structure of the database. Like QBE, this two-

dimensional language allows users greater flexibility with no syntax-required ordering constraints. Initially, E-

R diagrams were created on paper and converted to (mainly) the Relational model by hand, but with the advent

11

of bit-mapped displays and pointing devices by the early 1980s, tools were developed to allow the user to create

E-R diagrams on the screen via direct-manipulation. One early example of this is GUIDE [WK82], which also

permits specification of queries through manipulations of the E-R diagram; many other systems followed suit

[ACS90, EL85, LSN89, Miu91, SCT91, ZM83]. Thus, it became possible for users to design and manipulate

databases in a diagrammatic, non-textual manner. Figure 2.11 shows an example of how a query might be

expressed visually using pieces of an E-R diagram.

Works-In-Lab

Scientist Project

Laboratory

Part-Of-Lab

Works-On-Project

1

M

M N

1

M

Name Specialty ProjectName

Name

Address

Figure 2.10. A sample E-R diagram.

Scientist

?Name
= Biochemistry

Specialty

Figure 2.11. A sample query to print the names of scientists whose specialty is Biochemistry, expressed using
an E-R diagram fragment.

The 1980s and ’90s saw further developments in data models and interface tools. In the realm of interface

tools, Form systems appeared in research prototypes [KN87] and most commercial systems, providing

functionality similar to QBE, but with templates that appear like paper forms found in an office, instead of

tables. Browsers were developed to allow users to interactively move through the data, combining query and

output functions [SK82]. In addition to diagrams, constructs such as icons, tables, and dialog boxes were also

used to provide interactive access to schemas and queries. Developments in Artificial Intelligence led to

interfaces accepting natural language as input [Nat88], or using it as output to confirm user intentions for

12

queries specified in another way [EL85].

Data modelling saw two important advances in the 1980s: Object-Oriented (O-O) models and Logic

models. Object-Oriented models evolved from Semantic models (they use the term object class in the place of

entity set); the primary distinction (with respect to interfaces) is that O-O models support data encapsulation,

which permits the database designer to specify the interface to the data, potentially hiding some aspects of the

data, and limiting what operations the user can perform on it. To design the database, some O-O DBMSs use E-

R schemas [LSN89], or other directed graphs (SNAP [BH86], ENIAM [Cre89], VIMSYS [GWJ91], SKI

[KM84], [LCT+90], GOOD [PdB92], and others [YDS+87]). A sample schema in the MOOSE Object-

Oriented model [WI93] appears in Figure 2.12, representing object classes as nodes in a directed graph, and

Relationships as edges.

:N

Works−In−Lab

:N

Part−Of−Lab

:NM:

Works−On−Project

Laboratory()
Name

Address

Scientist() Project()

SpecialtyName ProjectName

Figure 2.12. A sample schema in the MOOSE object-oriented data model.

The Logic data model captures information as a set of facts, and a set of rules for determining new facts

that are implied by existing facts. This approach is very powerful for capturing and retrieving certain types of

information, such as those involved in expert systems (e.g. a system to diagnose illnesses, where different sets

of symptoms imply different illnesses). Queries are expressed declaratively as questions about facts (e.g., is a

fever a symptom of chicken pox?), or partial facts (e.g., what diseases are implied by a high fever?). This

approach provides users with the ability to think about data in terms of facts and implications instead of tables

and rows, or entities and relationships. Traditionally, logic databases and their queries were specified textually.

Some systems provide more advanced interfaces; one example is Hy+ [CM93], which can display data as a very

large directed graph of related facts, and permits query specification through drawing a graph which describes a

pattern to search for in the data.

One of the most significant technological developments of the late ’70s and early ’80s was the advent of the

personal computers and workstations. In terms of price and size, this brought computing to the desk-top of

many users. Using such machines, people not only accessed their databases directly, they also managed them,

increasing the demand for user-friendly interfaces. The late ’80s and early ’90s brought the introduction of

multimedia, 3-D displays and pointing devices, and virtual reality. 3-D displays have appeared in a few

products for data visualization, but on the whole the research community is still trying to figure out how best to

apply this technology.

The history of database interfaces has been marked by the interaction of several important trends: changes

13

in data models to improve user access, the development of improved approaches to database definition and data

manipulation, changes in the technology of artifacts for human-computer interaction, and changes in the role of

the user. It is impossible to definitively determine cause and effect, but there are some clear trends. Data

models were initially complex, powerful, and difficult to use. The Relational model marked a move toward

simplicity in access, though at the price of increased difficulty in expressing relationships. Since that time, there

has been a general trend of increasing model complexity to better capture the real world, while maintaining

simplicity of access. In the area of tools for database manipulation, the trend has been toward improved

usability and less textual representations, from the procedural queries in the Network model to SQL, to queries

based on direct-manipulation of diagrams or natural language input. Part of this trend is due to advances in

interface technology; e.g., visual display terminals are necessary to support systems like QBE, and bit-mapped

displays and pointing devices are needed to allow direct manipulation of directed graphs. Another part of this

trend is driven by changes in data models, for example, with the Network model it was necessary to write

queries as procedural programs, whereas the less complicated nature of the Relational model simplified the

development of a declarative query language. The change in the role of the user has also affected interfaces: as

computers have transformed from rare, expensive items sequestered in machine rooms, to common, inexpensive

tools on the desk-tops of average people, the user has seen increasing interaction with and management of the

database. This has increased the demand for user-friendly interfaces; the interface technology and data models

required for a natural language interface are not necessarily different from that required for an SQL interface,

but the former is intended to be easier for average users than the latter.

2.3 Current Database Interface Research

The current state of database interface technology is quite diverse: virtually all the data models described

above are available in commercial systems, accessible via many of the data manipulation tools. Most such

systems provide some kind of form-based interface for querying, browsing, and data entry, as well as a

declarative, textual query language. The state of research on database interfaces is also fairly broad, it can be

broken down into the following categories, which will be discussed in this section: interfaces to improve

traditional database functions, interfaces for providing new functionality to databases, and studies of database

users.

2.3.1 Improving traditional functionality

One of the most important roles of database user-interface research is to make existing database functions

easier to use. Recent research in this area includes topics such as querying, schema management, and data

display and browsing.

Query interfaces have received the most attention in recent research, probably because forming correct

queries is a difficult task, occurring more frequently than database design, and often undertaken by people with

less knowledge and experience than database designers. One of the most common approaches to queries is

expressing them visually as some kind of directed graph, often based on the schema [BFG94, CS94, CT94,

Nor92, PK94]. Some of this work is oriented toward producing a diagrammatic query language as expressive as

SQL (or more so). This diagrammatic approach does not require users to remember a complicated textual

syntax, though they still must understand the meaning of the query diagrams. A somewhat more ambitious

approach is the use of a formal visual language for query and data display specification [Cru93]. Alternatively,

14

to aid more novice users, other recent work has examined the possibility of mixing natural language or icons

with diagrams [Fer94, MPS94, SM94].

Another important area of current research is schema management. Simple diagrammatic definition of

schemas, such as E-R diagrams, is well established. Current research examines new types of representations,

such as 3-D displays [RK94], and flexible, extensible, user-defined representations such as those described in

this thesis. Another topic under study is tools for visually managing and describing versions of schemas

[LCC94, Mon94].

Output and browsing of data is also receiving some attention in current research. The major topic is

browsing the complex interrelated information found in Object-Oriented databases. Approaches include sorting

and clustering tables [SP94] or form-like dialog boxes [dO+94].

2.3.2 Providing new functionality

One important aspect of current database interface research is the development of interfaces that expand the

boundaries of database functionality. One branch of research has examined new paradigms for the query

process, including incremental queries based on direct manipulation of the results of previous queries [IS94],

permitting literal query-by-example through asking the user whether representative tuples match the search

criteria [DP94], providing immediate visual feedback about query results as the query qualifications are

progressively specified [AS94], and allowing the user to form queries using high-level categories of information

instead of the logical schema [HGR94].

Another fairly active branch of research involves database user interface tools, which allow either

automatic [MP94, OZL94] or manual [BMP+92, KN92, RKS+90] definition of user interfaces with built-in

connections to an underlying database.

Two other topics are worth noting. One is the integration of computer supported cooperative work

(CSCW) and databases, breaking the tradition of always hiding the existence of other users. An example is

allowing multiple users to navigate a 3-D information display, with the ability to see what data other users are

looking at or changing [BM94]. The other is the extension of database interfaces to support manipulation of

new kinds of data, such as sound [EV94] and video.

2.3.3 User studies

Study of database users is an area of database interface research that deserves more attention than it has

received. In order to determine which research paths to follow, a better understanding is needed of what users

need to do, and how they go about it. Examples of this include studies of how users approach the process of

schema design [BCD94], evaluating speed and accuracy of various input devices [EV94], and studies of the

evaluation process itself [PaQK94].

2.4 A Survey on Future Directions for Database Interface Research

In order to further demonstrate the importance of visualization in database/interface research, this section

describes a survey on the subject. In 1989, and again in 1993, Michael Stonebraker surveyed panels of database

researchers about which research areas they considered promising, and also which areas they considered the

least likely to produce significant results [SAD+93]. The panels’ conclusions were somewhat controversial

because of their dismissal of several active research areas as unimportant. On the positive side, however, both

15

panels chose user interfaces as the most promising area. In order to refine the results of these panels with

respect to user interfaces, a survey was conducted of the participants at the 2nd International Workshop on User

Interfaces to Databases (IDS94) in Ambleside, U.K. The survey's goal was to obtain a snapshot of work in the

area, and highlight important subareas and problems. Unlike the surveys by Stonebraker, the results are

intended to describe rather than direct; the sample size is too small and geographical distribution too narrow

to mark any topics as the most important, or as unsuitable for further work. In the fall of 1994 this survey was

expanded to include both the larger database and human-computer interaction communities. This section

presents the results and further analysis of these surveys, suggesting possible directions for database interface

research.

2.4.1 The Survey

This survey was initially performed during IDS94 to provide data for a panel discussion. The survey

results and the discussion that followed were sufficiently interesting to warrant a follow-up survey by e-mail,

providing more comprehensive results. A similar questionaire was later sent to the subscribers of the

DBWORLD and Visual-L mailing lists, which deal with database and interface issues respectively. Participants

were asked to list the areas of their own research, and outside those areas to vote for three topics at the

intersection of Databases and Human-Computer Interaction (DB/HCI) that they consider important. In order to

maximize the breadth of responses, the survey did not list specific topics (though general categories were listed

to suggest the breadth of the field). The survey also asked respondents to specify if they believe that a formal or

empirical approach is needed for their chosen topics. From the IDS workshop, 20 people responded,

representing about half of the workshop participants. There were 25 respondents from the DBWORLD list, and

11 from Visual-L.

2.4.2 The Results

Survey respondents voted for about 50 distinct topics within DB/HCI. To organize this large number of

topics, I have created a framework of categories, subcategories, and topics. These are listed in the following

outline; each is followed by the number of votes it received. Some answers covered two topics, and thus are

listed as half votes for each. Votes varied in generality; some votes were for a specific topic, some were for a

subcategory, and some were for a category as a whole. In the case of the User Issues category, two votes were

cast for that category as a whole, so the total for that category is greater than the sum of the votes of its

subcategories. In addition, two votes were cast by the IDS group for formal approaches to all aspects of

database/user interface work.

Topic Subcategory Total IDS DBWORLD Visual-L
Better Interfaces for Traditional DB Tasks

Data Visualization 16% (18)
Data Visualization in General 6 6 2
Interfaces to Manage Visualization 1 1 0
Formal Approaches to Visualization 0.5 1 0
New Techniques for Visualization (3-D, VR, etc.) 0.5 0 0

16

Querying 12% (13.5)
Query interfaces in general 3 1 1
Querying based on user's view of the data 1 0 0
Metaphors for data access/querying 1 0 0
Query visualization & direct manipulation 1 2 2
Formal approaches to query interfaces 0.5 0 0
Querying Large Databases 0 1 0

 Schema Design/Viewing 7% (8.5)
Interfaces for schema design 2.5 2 0
Schema visualization 0.5 0 0
New Techniques for visualization (3-D, VR,etc) 0.5 0 0
Formal approaches to Schema Interfaces 0 1 0
Interfaces for Querying the Schema 0 1 0
Schema Browsing in Distributed Databases 0 1 0

DB administration tasks 4% (5)
DB administration 1.5 1 0
DB distribution 0.5 2 0

Better interfaces for new types of DB or new DB functions
Interfaces for new data types 9% (10)

Multimedia 4 0 3
Formalizing unusual data types 0 1 0
Managing GIS data 0 2 0

Interactive Data Visualization 7% (8)
Interactive visualization in general 1 1 1
Direct manipulation of data 1 0 1
Interactive 3-D and multimedia views 1 0 1
Visualization of hypertext information 1 0 0

New kinds of databases/interfaces 7% (8)
New types/applications of DB in general 2 4 0
Interfaces for heterogeneous multi-DBs 1 0 0
Extending interaction for multi-modal systems 1 0 0

CSCW and DBs 6% (7)
Interfaces for cooperative DBs in general 4 0 3

New kinds of query interfaces 2% (2)
Justifying results from complex queries 0 0.5 0
Rule-based query formulation 0 0.5 0
Interfaces for fuzzy pattern matching in queries 1 0 0

User Issues
Evaluating Usability 11% (12.5)

Evaluating usability in general 3 4 1
Empirical usability evaluation 1 0 0
Defining evaluation criteria for DB interfaces 1 0 0
Formal usability evaluation 0.5 0 0

User Behavior 5% (6)
Models of User Behavior 2 2 1
User Studies 1 0 0

Different Types of User 4% (5)
Walk up and use DB interfaces 1 1 0
Formal basis for defining visualizations for different types of users 1 0 1
Maintain functionality for different users across different interfaces 1 0 0

Interface Design Issues
Database Interface Tools 5% (6)

DBs to manage Interface information 0 3 0
Flexible Interface Generators 0 2 0
Facilitating the production and integration of multiple interfaces 1 0 0

17

Other Issues 5% (5.5)
Architecture of distributed interfaces 1 0 0
Standardizing interface behavior 1.5 1 0
Formalize properties of user interfaces in the context of DBMSs 1 0 0
Integration of DB interfaces with those of other software 1 0 0

Table 2.2. Results of the survey on directions in database interface research.

2.4.3 Survey Conclusions

This survey has a sample size too small to state with any certainty the opinions of the DB/HCI community.

Nevertheless, it does give a good picture of the area and its popular topics. DB/HCI is a broad area, stretching

from mainly HCI topics, such as user studies, to mainly DB topics. In general, research into improving

traditional DB tasks is popular, but novel DB types and tasks are also receiving attention. In addition, the

database user is being studied to understand how these interfaces should be oriented. Considering specific

subcategories, data visualization is the clear favorite, with 26 votes spread between read-only and interactive

visualization. After that, the topics are much closer together: with the most popular as Query Interfaces

(traditional and new together at 22%), Usability Evaluation (11%), Interfaces to Manage New Data Types (9%),

Schema Design and Viewing (7%), and New Types of Databases and Interfaces (7%). Given the small sample

size, looking at the numbers for individual topics is not worthwhile, but their breadth gives a good picture of the

range of current research. On the whole, visualization of data, queries, and schemas is an important part of

research toward better interfaces.

2.5 Summary

This chapter has considered the past, present, and future of database interfaces. It is clear from this

discussion that interfaces play an important role in the evolution of databases. It is also clear that in the current

era of database interfaces based on direct-manipulation of bit-mapped displays, visual representations of

database information are a crucial part of user interfaces. Whether displaying schemas, data, or queries,

visualization is critical. This thesis presents a framework with which flexible, extensible visualization tools can

be built to help interfaces in these areas.

