
Published in the Summer 1994

Journal of Intelligent Information Systems

Special Issue on the Management

of Visual Information: 3, 263-298 (1994)
Journal of Intelligent Information Systems� �� ���� ������

c� ���� Kluwer Academic Publishers� Boston	 Manufactured in The Netherlands	

Foundations of Visual Metaphors
for Schema Display

EBEN M� HABER haber
cs	wisc	edu

YANNIS E� IOANNIDIS yannis
cs	wisc	edu

MIRON LIVNY miron
cs	wisc	edu

Department of Computer Sciences� University of Wisconsin� Madison� WI �����

Abstract� Many aspects of database systems have been improved by Graphical User Interfaces

�GUIs�	 One area that has not received adequate attention in GUI research is the visual presen�

tation of schemas� despite the increasingly important role that schemas play in database design

and operation	 Schema visualizations are valuable for viewing and manipulating both the schema

and the information captured by it	 In this paper� we describe a framework that formalizes the

process of visualizing database schemas or any similar structured information	 It is based on the

concepts of a data model capturing schemas� a visual model capturing visualizations� and a visual

metaphor that de�nes a mapping between the two models	 This formal description of the mapping

between a schema and its visualization permits straightforward declaration of visual metaphors�

and provides criteria to evaluate metaphors as to their ability to correctly visualize a schema	

Given a visual metaphor� the framework divides visual information into that which has meaning

relative to the data model� that which has meaning to the user but not to the data model� and

that which is only aesthetic	 This separation permits better use of aesthetic information� resulting

in richer visualizations	 As a whole� we believe that the formalism provides the foundations on

which better schema visualization tools can be built	

Keywords� Database system� schema� user interface� visualization of structured information�

metaphor

1. Introduction

Graphical User Interfaces �GUIs� are playing increasingly important roles in Data�

base Management Systems �DBMSs�� improving ease of use through more intuitive

operation and increasing information bandwidth from computer to user through vi�

sual display of information� Research in this area has touched upon many aspects

of DBMSs� including visual DBA tools �Benjamin and Lew� ���	�� non�textual

speci
cation of queries �Batini� et al�� ����� Cruz� ������ displaying and querying

multimedia and visual information �Egenhofer and Frank� ����� Gupta� Weymouth�

and Jain� ����� Leong� Sam� and Narasimhalu� ����� Yoon� et al�� ���
�� creating

visual representations of complex data �Flynn and Maier� ����� King and No�

vak� ����� Maier� Nordquist� and Grossman� ���	� Mamou and Medeiros� ������

browsing through databases �Agrawal� Gehani� and Srinivasan� ����� Motro� ���	�

Stonebraker and Kalash� ����� Tsuda� et al�� ������ and form�based data entry

�King and Novak� ���
��

2 HABER� IOANNIDIS� AND LIVNY

One area that has not received adequate attention is schema visualization� Many

DBMS GUIs allow non�textual speci
cation and browsing of schemas� but they

focus on other aspects of DBMS operation and not schema visualization per se�

The majority of these systems are limited to a single visual metaphor� they do

not permit visualization �exibility� Issues of e�cient� �exible� and usable schema

display are important� yet have received little attention in existing systems�

A database schema describes the conceptual structure of data stored in a DBMS�

Traditionally� schemas have been visualized textually as expressions in a data def�

inition language and have been used for database design� Schema visualization is

crucial in the database design process� where an unintuitive display can result in

misunderstandings and design errors� In some systems� schemas play a role beyond

that in database design� Many DBMS GUIs also use the schema as a template

for operations such as querying� browsing� data entry and display �e�g�� GOOD

�Paredaens and Van den Bussche� ������ GORDAS �Elmasri and Larson� ������

GUIDE �Wong and Kou� ������ QBE �Zloof� ��
��� QDB� �Angelaccio� Catarci�

and Santucci� ������ VILD �Leong� Sam� and Narasimhalu� ������ and many oth�

ers�� Our own work focuses on scienti
c databases and experiment management

systems �in the context of the ZOO Experiment Management System �Ioannidis

and Livny� ����� Ioannidis� et al�� ������ In these systems� the schema describes

the structure of experimental data� and as such can capture the interrelationships

between di�erent parts of an experiment� A good visualization of a schema can aid

users in better understanding the experiment and its signi
cance� useful not only

for human�computer interactions but also for collaborations among scientists� We

are working to improve visualization of schemas to assist their use in these various

roles�
To better understand and support the process of schema visualization� we de�

velop a formalism with the following main elements� �� a data model that captures

schemas� �� a visual model that captures visualizations� and �� a mapping between

data and visual models� referred to as a visual metaphor� In the interface commu�

nity� the term metaphor has been used in a variety of ways� generally describing a

transformation between abstract and visual information �Batini� et al�� ������� The

abstract information of concern to us is the database schema� Examples of visual

metaphors for schemas include directed graphs� E�R diagrams� and textual tables�

Clearly� these metaphors have di�erent characteristics� and would be useful in dif�

ferent circumstances� In general� there is no ideal metaphor� thus metaphor choice

is important� Unfortunately� no general metaphor selection criteria exist� For the

speci
c case of database schemas �and similar structured information�� our formal�

ism is intended to provide a framework for �exible use� de
nition� and evaluation

of visual metaphors� This formalism permits the declarative de
nition of models

and metaphors� provides criteria for the identi
cation of incorrect metaphors� and

presents some guidelines for metaphor comparison� It supports mixed metaphors�

the use of di�erent visual metaphors for di�erent parts of a single schema� estab�

lishing when and how metaphors may be mixed� Finally� the formalism allows the

richness of some visual models to be used to capture information that is meaningful

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 3

to the user but is beyond the database schema� We have begun implementation of

a schema visualization tool based on this formalism� The tool displays and allows

users to manipulate schemas and subschemas using di�erent metaphors� and in the

future will allow users to de
ne models and metaphors dynamically� While our

work is oriented towards database schemas� the formalism is also applicable to the

visualization of any structured data that conforms to our de
nition of data models

�which is found in the next section��

The rest of this paper is organized as follows� Section � describes data and visual

models� Section � de
nes visual metaphors� Section � discusses correctness and

quality of visual metaphors� Section � discusses mixing of metaphors� Section 	

describes how the metaphor framework may be used to capture information that

is conceptually meaningful or aesthetically pleasing to the user� but is unrelated

to the database schema� Section
 describes related work in the area� Section �

outlines future work and o�ers conclusions�

2. Data and Visual Models

For completeness� before presenting the de
nition of data and visual models� we

brie�y review some basic de
nitions and notations of binary relations which will

be used later in the de
nition of visual metaphors� A binary relation r from set

A �its domain� to set B �its range� is denoted r � A � B� The relation r is

called a function if for each a � A there is at most one b � B where �a� b� � r�

it is called total if for each a � A there is at least one b � B where �a� b� � r� it

is called injective if its inverse is a function� and it is called onto if its inverse is

total� Injective functions are sometimes called ��� functions� Binary relations can

be unioned� in which case� their domains� their ranges� and the sets of pairs in the

relations are unioned� respectively� For a function r� we use r�a� � b instead of

�a� b� � r� Functions may be applied to sets of values� if A� � A� then r�A�� is equal

to fr�a� j a � A�g� We also use r�� to denote the inverse of a function r� which

may return a subset of A if r is not ���� Finally� for a function r� the notation r�a�

is valid even if there is no b � B where r�a� � b� In that case� when applying a

set�valued function on r�a�� the empty set is returned�

2.1. Problem Formulation

By de
nition� a schema describes the conceptual structure of some information in

a database� speci
ed using the primitives of some data model �for clarity� such a

schema will henceforth be referred to as a data schema�� We are interested in the

process of creating a visualization of a data schema� For this� we introduce the

notion of a visual model� Like a data model� it describes the structure of some

information� though its primitives are visual� As with data schemas� any visual

representation that conforms to a visual model will be called a visual schema� Visual

schemas are used for two basic operations� presenting data schema information in

4 HABER� IOANNIDIS� AND LIVNY

a visual form� and allowing creation or manipulation of a data schema through

changes to a visual schema�

Using the above notions� the problem of visual representation of data schemas

may be stated formally as follows� Given a data model D� let S�D� denote the set

of valid data schemas that can be constructed based on that model� Similarly� let

S�G� denote the set of visual schemas that can be constructed based on a visual

model G� The sets S�D� and S�G� are de
ned to be the information capacities

�Miller� Ioannidis� and Ramakrishnan� ����� of the data model D and the visual

model G� respectively� In order to create visual schemas of data schemas� we require

a binary relation between S�D� and S�G�� whose speci
c properties depend on the

intended use of the visual schemas� Speci
cally�

�� If a visual schema of G is used only to view any data schema of D in its entirety�

then an onto function must exist of the form f � S�G�� S�D�� so that every

data schema can be represented visually�

�� If� in addition� a visual schema of G is also used to update a data schema of D�

then a total onto function must exist of the form f � S�G� � S�D�� so that

every visual schema can be uniquely interpreted as a data schema�

Clearly� not all such functions f that satisfy the above properties are useful�

Many are arbitrary mappings� with no obvious correspondence between the data

schema and the visual schema� Our goal is to establish a relationship between

the members of S�D� and S�G� so that when users view a visual schema� they

can infer the data schema to which it maps� Thus� f should be derived from a

correspondence between the features of the data and visual models� which would

enforce a structural similarity between data schemas and visual schemas� This

correspondence is a visual metaphor and is formally introduced in Section �� A

formal description of the features of data and visual models is given in the next

subsection�

We should mention at this point that the above problem formulation has been mo�

tivated by the very similar problem of mapping schemas and data between di�erent

data models in a heterogeneous database system �Miller� Ioannidis� and Ramakr�

ishnan� ������ The speci
c similarities and di�erences between the two problems

are beyond the scope of this paper�

2.2. A Formalism for Data/Visual Models and Schemas

In this subsection� we present a meta�model that can capture a large and interesting

class of data and visual models� Using this meta�model� we can describe the features

of any model in this class and discuss the relative information capacity of any pair

of models� Example models described in this meta�model are given in the following

subsection�

De�nition � Every data or visual model M can be seen as a sextuple M �� P �

A� V�Q�R�C � de�ned as follows�

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 5

P is a �nite set of identi�ers for the types of primitives in M� Each such type P

is associated with a �possibly in�nite� set of globally unique ids I�P � that can

be used to identify primitives of type P �

A is a �nite set of identi�ers for property names of primitive types in M� Each

element of A is of the form P�A� where P � P and A captures some attribute

that all primitives of type P should have�

V is a �possibly in�nite� set of identi�ers for values of properties of primitive

types in M� Each element of V is of the form P�A �� v� where P�A � A and

v captures some value that the P�A attribute may have� For certain attributes�

the values v may be drawn from the sets I�� of primitive ids�

Q is a function Q � P � �A� indicating for each primitive type P � P the set of

attribute identi�ers in A that correspond to P �

R is a function R � A � �V � indicating for each attribute P�A � A the set of

value identi�ers in V that can be assigned to it� To capture the set of actual

values instead of their identi�ers �e�g�� v instead of P�A �� v� the function R�

is used� where R��P�A� � fv j P�A �� v � R�P�A�g

C is a �nite set of constraints� i�e�� rules that must be satis�ed by any schema

expressed in M� These constraints are formulas in some prespeci�ed language

L and use elements that refer to identi�ers in P� A� V�

Note that� by the way A and V were de
ned� if P �� P � then Q�P � and Q�P �� are

disjoint� and if P�A �� P ��A� then R�P�A� and R�P ��A�� are disjoint� Also note that

primitives are essentially complex objects� since some of their attributes can take

values that are primitives themselves�

Most of the common data models fall naturally in this meta�model� For example�

consider the relational model� It has relations and attributes as its primitive types�

each relation has a name� and each attribute has a name� a type� and a relation with

which it is associated� Fully speci
ed examples of data and visual models may be

found in Section ���� The meta�model may be enhanced with several additional

characteristics of models in a straightforward way� e�g�� with an identi
er for the

name of each instance of the model� but we avoid that for simplicity of presentation�

As de
ned above� a data schema or visual schema may be considered as an in�

stantiation of a data or visual model� respectively� This is formally de
ned as

follows�

De�nition � A schema S of a model M is de�ned as follows�

� For every P � P� there is a �nite set �P � � I�P � of primitives of type P that

appear in schema S�

� For every P�A � A� there is a total function �P�A� � �P � � �R��P�A���

which determines the value of the P�A attribute for every primitive in �P �� The

6 HABER� IOANNIDIS� AND LIVNY

�R��P�A�� set is de�ned such that� if R��P�A� � I�P ��� for some P � � P� then

�R��P�A�� � �P ��� Otherwise� �R��P�A�� � R��P�A��

� For every c � C� there is a constraint �c�� constructed from c by replacing every

P � P by �P �� every P�A � A by �P�A�� and every P�A �� v by v� All these

constraints are satis�ed by the schema�

In the following table� we summarize the notations introduced in De
nitions �

and ��

Notation Explanation

P The set of primitive types

P A primitive type

I�P � The set of identi�ers for primitives of type P

�P � The set of primitives of type P in a schema

A The set of attributes for all primitive types in P

P�A The A attribute of primitives of type P

�P�A��p� The value of the P�A attribute of the primitive p

V The set of values for all attributes in A

P�A �� v The element v as a value of the attribute P�A

Q�P � The set of attribute identi�ers of primitives of type P

R�P�A� The set of value identi�ers of the P�A attribute

R��P�A� The set of values of the P�A attribute

C The set of constraints of a model

�c� The instantiation of a constraint c � C for the

primitives in �P � and attribute values �P�A� in a schema
2.3. Creating Visual Models

Creation of data models is a classical database problem that is beyond the scope

of this paper �Batini� Ceri� and Navathe� ������ In this subsection� we concern

ourselves with creating suitable visual models� There is an important di�erence

between the two kinds of models� Data models capture abstract organization of

information� Their primitive types� attributes� and values are determined by the

information the model captures� Visual models� however� must re�ect not only

the information to be organized� but also the medium in which the models are

expressed� Speci
cally� visual model primitive types re�ect both the information to

be shown and the medium� while the possible attributes and values of a primitive

type are determined by the medium alone� For example� consider a visual model

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 7

used to display directed graphs� Any such model would likely have primitive types

corresponding to nodes and edges� If the model were oriented toward a monochrome

ASCII terminal� these primitive types and their attributes and values would be very

di�erent from a similar model intended for a color bitmapped display system� The

ability to use colors� shapes� lines� and patterns would vary widely between the

two� In general� the number and semantics of visual model primitive types are

determined by the information that must be displayed� but the precise composition

of the primitive types is determined by the medium�

Because data models are used to represent abstract information� their types of

primitives may be chosen arbitrarily based on some conceptualization of the world�

On the other hand� visual model primitives must be visualizable� Therefore� vi�

sual primitive types must be constructed using only certain visual building blocks�

Motivated by our involvement in developing a scienti
c Experiment Management

System� we are concerned with visual models to be displayed on color bitmapped

workstations as these are commonly available to scientists� To build visual models

for this medium� we have chosen the basic visual constructs described in the fol�

lowing table� The choice of these constructs is somewhat arbitrary� They are not

formally de
ned in this paper� but the interested reader may
nd a formal discus�

sion of visual constructs elsewhere �Foley� et al�� ������ In the table below� location

is a complex attribute consisting of the spatial coordinates of the system� For the

region� text�display� and picture�display constructs� it is assumed to be the location

of their center�

Construct Attributes

region shape� location� orientation� size� background�color�

background�pattern� boundary�width� boundary�color�

boundary�pattern

line source�location�dest�location� width� color� pattern

text�display text� font� location� orientation� size� and color

picture�display picture� location� orientation� size� and color

Visual primitive types are de
ned as compositions of the above primitive types

or other� previously de
ned� visual primitive types� The attributes of a visual

primitive are the attributes of all of its components� possibly renamed to avoid any

naming con�icts� Since compositions often have a large number of attributes� in

our examples we have omitted many visual attributes to make the examples more

manageable�

To make the appearance of a composition coherent� it will usually be necessary to

include constraints relating the attributes of its di�erent components� For example�

if a box with a piece of text in the center were required� a composition of a region

and a text�display would be de
ned as a primitive type� and a constraint would

require the value of the location attribute of text�display to be the same as the

8 HABER� IOANNIDIS� AND LIVNY

value of the location attribute of region� These constraints regulate the appearance

of visual primitives� and are called composition constraints to distinguish them from

other� more semantically focused constraints�

2.4. Example Data and Visual Models

Consider a very simple semantic data model� supporting entity�classes that may

be mutually related with binary relationships� Each entity�class has a name and a

kind� The two possible kinds are �simple� �such as the class of integers or the class

of character strings� or �compound� �user�de
ned classes�� Each relationship has a

name� a card�ratio of ������ ���N�� �M���� or �M�N�� and two entity�classes with which

it is associated� This data model is the sextupleD �� PD� AD� VD � QD� RD � CD ��

where CD � �� and the primitive types in PD� their attributes in AD� and their

corresponding value sets as determined by R�D are given in the following table��

Primitive Type �P � Attribute �P�A� Attribute Values �R��P�A��

entity�class name text

kind fsimple� compoundg

relationship name text

card�ratio f�	�� �	N� M	�� M	Ng

from�class I�entity�class�

to�class I�entity�class�

Note that the set of values of an attribute has several possibilities� an in
nite

prede
ned set �e�g�� text�� an enumerated set �e�g�� f���� � � �� M�Ng�� or the set of

all instances of a primitive type �e�g�� I�entity�class���

Similarly� consider a very simple visual model that supports directed graphs� We

de
ne the primitive types to be nodes and edges� the former a combination of a

region and a text�display� and the latter a combination of a line� a text�display� and

two nodes� This visual model is the sextuple G � � PG� VG� AG� QG� RG� CG ��

where the primitive types in PG� their attributes in AG� and their corresponding

value sets as determined by R�G are given in the following table� For simplicity�

only a subset of the attributes is shown�

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 9

Primitive Type �P � Attribute �P�A� Attribute Values �R��P�A��

node shape fsquare�ovalg

location plane�points

size f�

 pixelsg

color fblue� redg

label�text text

label�color fblackg

edge source�location plane�points

dest�location plane�points

color fblack� blue� yellow� green� orangeg

from�node I�node�

to�node I�node�

label�text text

label�color fblackg

There are four constraints in set CG that all schemas of G must satisfy� Two

of them are composition constraints� related to the relative positioning of visual

constructs within each primitive type� The remaining two are somewhat more

interesting� determining the location of edge primitives in terms of the nodes they

connect� Using simple Horn�clauses� we show these constraints� which indicate that

the location of the source �resp� destination� of an edge is the same as the location

of the from�node �resp� to�node� of the edge�

�e � edge� source�location�e� � location�from�node�e��� and

�e � edge� dest�location�e� � location�to�node�e���

3. Visual Metaphors

3.1. Definitions and Notation

A visual metaphor is de
ned as a correspondence between some of the features

of a data and a visual model� i�e�� elements in P � A� V � A metaphor induces a

mapping between data schemas �instances of the data model� and visual schemas

�instances of the visual model�� Basing the schema mapping on the feature cor�

respondence helps produce visual schemas that� when viewed� allow the user to

deduce the underlying data schema �Section ����� Consider a data model D � �

PD� AD� VD � QD� RD� CD � and a visual model G � � PG� AG� VG� QG� RG� CG ��

A metaphor will include correspondences between primitive types �PD and PG��

between attributes �AD and AG�� and between attribute values �VD and VG�� �The

above de
ne a correspondence between constraints as well� since constraints refer

to elements of the P � A� and V sets�� These correspondences describe the meaning

10 HABER� IOANNIDIS� AND LIVNY

of visual model features with respect to the underlying data model� For example�

given the data and visual models from Section ���� if a correspondence were de
ned

between the primitive types entity�class and node� then every instance of a node in

a visual schema would imply the existence of a entity�class in the data schema� To

allow presentation �exibility� we permit correspondences to exist between multiple

features in the visual model and a single feature in the data model �an example of

this is given in the next section�� This is possible only when the visual model has

a greater information capacity than the data model �Section ����� which is almost

always the case�

De�nition � A metaphor T is an onto function from G to D �denoted by T � G �

D�� which is the union of the following three onto functions�

Function Tp � PG � PD�

Function Ta � AG � AD� which is equal to
S

P�PG

TPa � where for each

primitive type P � TPa � QG�P �� QD�Tp�P ��

is an onto function� �

Function Tv � VG � VD� which is equal to
S

P�A�AG

TP�Av � where for each

attribute P�A� TP�Av � RG�P�A�� RD�Ta�P�A��

is an onto function�

As mentioned above� all constraints in CG use elements that refer to identi
ers

in PG� AG� and VG� We occasionally use the notation T �c�� c � CG� for the

constraint constructed from c by replacing each element referring to an identi
er x

of PG � AG � VG by an element referring to the identi
er T �x�� We also use the

notation T �IG�P �� to denote ID�T �P ���

3.2. The Induced Schema Mapping

Given a metaphor as de
ned above� a mapping between data and visual schemas can

be induced� Using this induced mapping� any data schema of D can be transformed

to a visual schema of G in a manner that remains faithful to the metaphor�

De�nition � Given a metaphor T � G � D and a visual schema of G� T induces

an onto function t from �
S

P�PG
�P �� � f�P�A� j P�A � AGg onto the corresponding

features of some data schema of D with the following characteristics�

� ��P � PG���p � �P �� if Tp�P � is de�ned� then t�p� is a primitive of type Tp�P ��

� ��P � PG���P�A � Q�P �� if Ta�P�A� is de�ned� then t��P�A�� is a function

�Ta�P�A�� � �Tp�P �� � �R�D�Ta�P�A��� such that ��p � �P �� the following

holds�

if �P�A��p� � v and T �P�A �� v� � �P ��A� �� v��

then t��P�A���t�p�� � v��

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 11

p

[P.A]

Tt t

t(p)

t([P.A])

P'.A' == v'

Attribute Function Application

Metaphor

v

v'

P.A == v

Value to Identifier ∈ V

Figure �� Commuting diagram between metaphors and attribute functions	

The
rst clause above states that primitives of the visual schema in G represent

primitives in some data schema in D based on the type correspondence speci
ed

by T � The second clause states that� for every visual model attribute mapped by

Ta� there exists a data model attribute whose values are determined based on the

value correspondence Tv� Essentially� this is a commutativity requirement that is

best shown in Figure �� Based on the two clauses above� the induced function t

determines a mapping from any visual schema in G to some data schema in D�

As with the metaphor T � the induced function t can be extended to include in its

domain instantiations of constraints� t��c�� for c � CG�

3.3. An Example

To illustrate the above de
nitions� we present a metaphor T � This metaphor maps

from a visual model similar to that in Section ��� to the data model discussed in the

same section� The visual model has been supplemented with an additional primitive

type� called a blob� which consists of a region and two text�displays� referred to as

label� and label�� Also� the from�node and to�node attributes of relationship have

been extended to accept as values both nodes and blobs� This function T is de
ned

in the table on the following page�

3.4. Discussion

A metaphor provides meaning to features of a visual model by establishing a cor�

respondence between them and the features of a data model� The precise meaning

is captured by the function T � For example� displaying a red oval node implies the

existence of a compound entity�class in the data model� The use of the T function

and its induced schema mapping t should produce visual schemas that users can

correctly and unambiguously interpret� Depending on various properties of T � the

visual schema may include features that do not carry any meaning and�or features

that carry redundant meaning� Based on knowledge of T � users should be able to

ignore the former and not be confused by the latter�

12 HABER� IOANNIDIS� AND LIVNY

We would like to comment on the various properties of metaphors as they relate

to the relative information capacity of a data and a visual model� As a minimum

requirement� a metaphor has been de
ned as an onto function� if it were not onto�

then some characteristics of a data model would not be captured visually� if it were

not a function� then a single visual construct could have multiple meanings� and

therefore could not be interpreted correctly��

For a metaphor that is not total� some visual elements do not mean anything with

respect to the data model� If a metaphor will be used only for retrieving a data

schema� T does not have to be total� Under retrieval� only existing schemas will be

visualized� so non�totality does not create any problem� Speci
cally� non�totality of

Tp or Tv implies that some visual primitive types or some values of visual attributes

respectively will never be used� while non�totality of Ta implies that the values of

some attributes can be arbitrary� If a metaphor will be used for retrieving and

updating a schema� Tp and Ta still do not have to be total� For Ta� the reasons are

the same as above� A non�total Tp is permissible because visual primitive types that

are not mapped by Tp may be used for presentation purposes and can be ignored

when mapping the visual schema to a data schema� For each P�A that is mapped

by Ta� however� T
P�A

v must be total� Otherwise� one could draw a visual schema

that would not be translatable to a data schema�

To demonstrate the use of a non�total metaphor� consider a data model D captur�

ing words in the English language as strings of letters from the Roman alphabet� A

visual model G is constructed to visually present these words based on a straight�

forward metaphor that maps each display of a word to the word itself� Because

the strings are visually expressed� G must also include information about typeface�

size� color� letter spacing� and other visual characteristics of letters that carry no

particular meaning� i�e�� Ta is not total� Because of this� G has a greater infor�

mation capacity than D� the number of its visual schemas is equal to the number

of English words �about 	������� multiplied many times by the possible typefaces�

sizes� and the other characteristics� Yet regardless of font or size� a visualization of

a word carries an unambiguous meaning in the context of the metaphor�

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 13

x T �x�

node entity�class

node�label�text entity�class�name

node�label�text��x entity�class�name��x

node�color entity�class�kind

node�shape entity�class�kind

node�color���blue
 entity�class�kind���primitive

node�shape���square
 entity�class�kind���primitive

node�color���red
 entity�class�kind���compound

node�shape���oval
 entity�class�kind���compound

blob entity�class

blob�label��text entity�class�name

blob�label��text��x entity�class�name��x

blob�label��text entity�class�kind

blob�label��text���P
 entity�class�kind���primitive

blob�label��text���C
 entity�class�kind���compound

edge relationship

edge�label�text relationship�name

edge�label�text��x relationship�name��x

edge�from�node relationship�from�class

edge�from�node��c relationship�from�class��t�c�

edge�to�node relationship�to�class

edge�to�node��c relationship�to�class��t�c�

edge�color relationship�card�ratio

edge�color���green
 relationship�card�ratio����	�

edge�color���orange
 relationship�card�ratio����	�

edge�color���yellow
 relationship�card�ratio����	N

edge�color���blue
 relationship�card�ratio���M	�

edge�color���black
 relationship�card�ratio���M	N

If a metaphor is not ��� then multiple visual elements have the same meaning with

respect to the data model� For both retrieval and update� the implications of this are

the same� If Tp or Tv are not ��� then there is a choice of visual constructs that can

be used� which should be left to the user or resolved via some default mechanism�

If Ta is not ��� then there is redundancy� multiple visual attributes capturing the

same data attribute� By the nature of visual models� there is no issue of choice here�

all attributes of a primitive must have some value in a visual schema� and therefore

all those mapped to the same data attribute should be assigned consistent values

based on Tv� This issue of consistency arises because of the redundancy semantics�

For visual updates of schemas� if several visual attributes are mapped to the same

attribute by Ta� as soon as the value of one of them is speci
ed� the values of all

others are uniquely determined�

14 HABER� IOANNIDIS� AND LIVNY

Functions that are not ��� establish equivalence classes among the features of the

visual model� i�e�� several features have the same meaning� For example� in the

metaphor of Section ����

Tp�node� � Tp�blob� � entity�class

implies that a primitive of type entity�class may be represented equivalently as

either a visual primitive of type node or one of type blob� Attribute correspondences

are similar but more complex� A data model attribute may correspond to a set of

visual attributes� some of which may come from the same primitive type� For

example� in the same metaphor�

Ta�node�color� � Ta�node�shape� � Ta�blob�label��text� � entity�class�kind

indicates the same choice of node or blob primitive types as above� In addition� it

speci
es redundancy� visual attributes node�color and node�shape are from the same

primitive type� so they redundantly capture data attribute entity�class�kind� Value

mappings are similar� but even more complicated� so they warrant two examples�

First�
Tv�edge�color �� �green�� � Tv�edge�color �� �orange��

� �relationship�card�ratio ��������

demonstrates attribute value choice� two values have the same meaning with respect

to the metaphor� Second�

Tv�node�color �� �blue�� � Tv�node�shape �� �square��

� Tv�blob�label��text �� �P��

� �entity�class�kind �� �primitive��

includes values from di�erent primitive types �e�g� node�color versus blob�label��

text�� paralleling the choice at the primitive type level� and di�erent values for

di�erent attributes of the same primitive type �e�g� node�color and node�shape��

indicating values for redundant attributes�

Figure � gives an example schema and a visual schema that could be produced

by applying the induced mapping of the example metaphor in Section ���� �Due to

limitations of the printing medium� color attributes cannot be displayed directly�

instead they are indicated by the name of the color along the line of the edge��

4. Judging Metaphors: The Good, the Bad, and the Ugly

Given a framework for creating visual metaphors� it is necessary to examine issues

of metaphor correctness� We thus develop criteria that are useful in ensuring that

a metaphor accurately presents information� There are issues beyond correctness�

however� that a�ect how well metaphors visualize information� We discuss these

issues of metaphor quality and their impact on visualization as well�

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 15

entity-class1 ("Name", primitive)
entity-class2 ("Age", primitive)
entity-class3 ("Salary", primitive)
entity-class4 ("Person", compound)
relationship1 ("Children", M:N, entity-class4, entity-class4)
relationship2 ("Has Name", 1:N, entity-class4, entity-class1)
relationship2 ("Has Age", 1:N, entity-class4,entity-class2)
relationship2 ("Has Salary", 1:N, entity-class4, entity-class3)

Name

Age

Salary

Person

Has Name

Has
Age

Has
Salary

Children

A DDL Representation of the
Data Schema

A Visual Model Representation
of the Data Schema

(Yellow)

(Black)

(Yellow)

(Yellow)

Figure �� Example of a Metaphor Applied to a Schema	

4.1. Metaphor Correctness

We have already discussed the requirements for the relation T in order for it to be

a valid metaphor based on the desired operational goals� retrieval and�or update�

In addition� there are three other issues that a�ect the correctness of a metaphor�

All three require some consistency between the metaphor and the visual model� the

rst in terms of allowed attribute values� and the second two in terms of constraints�

First� consider attributes whose values are primitives� e�g�� the from�class at�

tribute of relationship in Section ���� It is necessary that the type of such a

primitive�valued visual attribute be consistent with the metaphor and with the

type of the data model attribute to which it is mapped� Continuing the above ex�

ample� the attribute relationship�from�class takes values of type entity�class� The

primitive type entity�class is mapped to by more than one visual primitive type�

speci
cally node and blob� As a result� it is necessary that the visual attribute

edge�from�node� which maps to relationship�from�class� accept as values primitives

of types node and blob� Speci
cally� if R�D�P�A� � I�P �� for some P � � PD then

the following should hold�

RG
��T���P�A�� � �P ���T���P ��I�P
����

For example� the metaphor of Section ��� satis
es the above since

R�G�T
���relationship�from�class�� � I�node� � I�blob�

� �
P�T���class�I�P ��

Otherwise� it would not be possible to choose arbitrary node or blob representations

for entity�class primitives�

16 HABER� IOANNIDIS� AND LIVNY

Second� when there is redundancy in the metaphor� i�e�� Ta is not ��� and di�er�

ent attributes of the same primitive type in PG are mapped to the same attribute

of some primitive type in PD� the values of the former attributes must be consis�

tent� This can be enforced with constraints in CG� For example� in the metaphor

presented in the previous section� the color and shape attributes of node are re�

dundantly used to capture the kind attribute of entity�class� For the metaphor to

be correct as de
ned in Section ���� the visual model must include the following

constraints�

�n � node� color�n� � �blue� � shape�n� � �square��

�n � node� color�n� � �red� � shape�n� � �oval��

Allowing any other combination of shape with color would permit visual schemas

with no corresponding data schema� This would prevent the visual model from

being used for updates of the data schema� since it would allow con�icting values

of the kind attribute of the entity�class� For example� a visual schema with a blue

oval node would have no meaning with respect to the metaphor�

Third� the constraints of the visual model should be such that no valid visual

schema will map to an invalid data schema� and vice versa� This is ensured through

a relationship between the constraints in the data model and those in the visual

model� This relationship may be very complex� since one may perform inferences

on a given set of constraints to derive additional constraints that are not explicitly

speci
ed� For the purposes of this paper� we take a simple approach and consider

only some straightforward su�cient conditions for the consistency of constraints

between the two models� Speci
cally� for two constraints c and c�� c subsumes c� if

the set of schemas that satisfy c is a subset of the set of schemas that satisfy c��

Consider the subset CG
� of the constraints in CG that are mapped by the metaphor

T � �Note that no composition constraint is among them�� If the visual model will

be used for retrieval only� then the following should hold�

�c� � CG
�� 	c � CD� c subsumes T �c���

This is su�cient to ensure that all data schemas have a corresponding visual schema�

On the other hand� if the visual model will be used for updates as well� then the

following should hold�

CD � fT �c� j c � CG
�g�

This is su�cient to additionally ensure that all visual schemas have a corresponding

data schema� Note that the visual model may have additional constraints� those in

CG
 CG
�� e�g�� composition constraints or other constraints that are enforced for

presentation purposes�

4.2. Metaphor Quality

A metaphor may be correct and none�the�less present information poorly� For

example� it is conceivable to have a correct metaphor where Ta is not a function�

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 17

Such a Ta would map the same visual attribute to more than one data attribute�

so that each value of the former corresponds to a combination of values of the

latter� We have decided� however� that this introduces a level of visual complexity

that is often uncomfortable and would result in confusing visual schemas in many

cases� For example� consider the relationship primitive type of the data model in

Section ���� enhanced with a kind attribute taking values �part�of� and �association��

Following the metaphor of Section ���� consider mapping the edge�color attribute

to the combination of the relationship�kind and relationship�card�ratio attributes�

Each of eight colors would map to a given combination of kind and ration� e�g��

T ��orange�� � ��part�of�� �M�N��� Such a Ta relation is not strictly incorrect� i�e��

a well de
ned mapping between visual and data schemas can still be derived with

the desirable properties with respect to information capacity� We believe� however�

that such a metaphor would be more di�cult for most users to remember than one

where two separate visual attributes are mapped to the two data attributes� We

thus disallow non�functional Ta�s�

Beyond functionality of Ta� other characteristics ofmetaphor quality also a�ect in�

formation presentation� We discuss three such traits that greatly a�ect metaphors�

information hiding� which occurs when information is captured by the visual model

but is not visible to the user� visual ambiguity� which happens when visual prim�

itives of di�erent primitive types or di�erent values of the same attribute appear

identical to the user� and semantic ambiguity� which exists when visual attribute

values do not suggest the data attribute values they capture� The
rst two issues

are concerned with the visual model alone� while the third regards the metaphor

itself� There exist other issues of metaphor quality beyond those mentioned above�

including intuitiveness� versatility� and emphasis� These are more di�cult to quan�

tify so they are beyond the scope of this paper�

In general� there are no universal rules about good user interfaces� Nevertheless�

we believe there are certain desirable and undesirable characteristics of user inter�

faces in the context of our own work� We thus conclude the discussion of each of

the metaphor quality traits above with comments on the trait�s implications� and

whether we believe these implications to be good or bad�

4.2.1. Hidden Information

Not all information captured by a visual model is visible to the user� This hidden

information falls into two categories� transient and structural� Transient hidden

information is not visible to the user but can become visible through some manip�

ulation of the visual schema that leaves the underlying data schema unchanged�

Consider the visual model described in Section ��� and the metaphor from Section

���� The node primitives have locations that may be anywhere on the plane� thus

it is possible for two nodes to have the same location� The convention for such

cases in a ��D display system is to make one of the nodes invisible or partly visible�

conceptually �behind� the other node� The node that is behind captures informa�

tion� yet the user cannot see it� If the front node is moved� an operation that does

18 HABER� IOANNIDIS� AND LIVNY

Node1

Node2
Node2

Node1
Node2Node1

Both Node1 and
Node2 Visible

Node2 Partially
Hidden

Node2 Completely
Hidden

Figure �� An example of transient hidden information	

not a�ect the underlying data schema� the back node becomes visible� Figure �

demonstrates how one primitive can be partially or totally hidden by another�

This example of hidden information depends on the fact that the location at�

tribute is free� not part of the metaphor� Freedom of other attributes can also

result in transient hidden information� For example� if the size of a node were free�

the node could be hidden by setting its size to zero�

Structural hidden information is information that a visual model captures but

does not display� Consider the edge primitive type from the visual model in Section

��� and the metaphor in Section ���� It has two attributes� from�node and to�node�

which are not directly shown� Their values are made visible by the constraints

that de
ne the location of the edge� Consider the result of removing this constraint

from the visual model� The location of edges would no longer be constrained� an

edge line could appear anywhere in the visual schema with no relation to the nodes

speci
ed by its from�node and to�node attributes� The visual model would still be

valid� it would still capture the same information� but this information would not be

visible to the user� Figure � demonstrates the appearance of a visual schema with

and without the constraints which determine edge location� The same metaphor

contains another example of structural hidden information� Edges are not directed�

and as a result it is not possible to distinguish the edge	s from�node from the to�

node� Structural hidden information can occur whenever the appearance of one

attribute is a�ected by another attribute or constraint� In the above example� the

from�node attribute is made visible through a constraint that links it to another

attribute� source�location�

We believe that structural hidden information should usually be avoided� whereas

transient hidden information need not be� In many cases� a model that cannot vi�

sually display all the information it captures is undesirable� Temporarily invisible

information� however� is not a problem as the hidden information can be made vis�

ible when necessary� In fact� transient hidden information can be a very useful tool

for reducing clutter in a visual schema by hiding infrequently needed information�

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 19

Node1

Node2

Node3

edge1
edge2

edge1

edge2Node1

Node2

Node3

Figure 	� An example of structural hidden information	

4.2.2. Visual Ambiguity

Visual ambiguity occurs when a visual model contains two distinct primitive types

�members of PG� or two distinct values for the same attribute �members of VG�

that are visually indistinguishable� Two items are visually indistinguishable when

a user viewing one cannot discern which of the two it is�

Objects with identical appearance are obviously visually indistinguishable� For

example� it would be legal to de
ne two di�erent visual primitive types with the

same attributes and values� and equivalent constraints� Metaphors could be cor�

rectly and unambiguously de
ned �since they depend on symbolic representations

of the primitive types and their characteristics�� but users might be unable to in�

terpret schemas correctly� since instances of the two visual primitive types would

appear the same� We refer to these cases as strict visual ambiguity� A slightly

less strict form of visual ambiguity occurs in cases where attributes of two di�erent

primitives have di�erent names� but the same values and constraints�

Another kind of visual ambiguity occurs when two primitive types or attribute

values appear very similar� though not identical� Primitive types or attributes with

a similar appearance may be visually indistinguishable� depending in part on the

degree of similarity and the visual acuity of the viewer� For example� if two polygons

of �� and �
 sides are mapped to two di�erent values of a data attribute� Figure �

shows that users might not be able to correctly distinguish between the two values�

Another example would be two primitive types with di�erent attributes and values

but the same appearance to the user�

Visual ambiguity is� in general� undesirable� because it results in schemas of a

visual model that may not be correctly interpreted by a user� Strict visual ambiguity

is straightforward to detect by testing theQG andRG functions� and the constraints

a�ecting the primitives in question� Non�strict ambiguity is much harder to de
ne

formally� let alone detect� there may not exist universal similarity �as opposed

20 HABER� IOANNIDIS� AND LIVNY

Figure �� Polygons of �
 and �� sides	

to equality� measures� Investigating possible de
nitions and similarity detection

algorithms is part of our future work�

4.2.3. Semantic Ambiguity

Semantic ambiguity occurs when the appearance of a visual attribute value does

not bring to mind the data attribute value with which it corresponds� The degree of

ambiguity depends upon the memory of the user� the range of data attribute values�

the type of visual attribute� and the choice of visual attribute values� For example�

using randomly assigned colors to represent values between � and ��� would be

problematic for any user lacking an eidetic memory �if the the values are of interest

to the user�� Using colors ordered and spaced by their place in the spectrum would

be better� giving the user a feel for the magnitude of di�erent values� Using Arabic

numerals to represent these values would be the most precise �though possibly less

good for giving a quick impression of the value�� While improving human memory

is beyond the scope of this paper� we can o�er visual attribute and value choice

guidelines to reduce semantic ambiguity�

In general� any visual attribute type can be used for representing a data attribute

with a small value range� For example� it would not be di�cult for a user to

learn associations between a small number of shapes� colors� or patterns� and their

corresponding data model values� Precisely capturing values with a larger range�

however� requires visual attributes with inherent meaning� the visual value must

in some way suggest the data value� Attribute types may be divided into two

categories with respect to inherent meaning� Text and pictures can have much

inherent meaning as long as the viewer shares a linguistic or cultural context with

the creator� For example� a picture formed of a red octagon with the word �STOP�

in the middle has an immediate association for most people� Shape� color� pattern�

size� and location have less inherent meaning� and what meaning they have is

limited to more narrow contexts� For example� a red colored light means �stop�

in the context of driving� but it also means �on� in the context of electric kitchen

ovens and toasters� If a precise representation is not needed� the limited inherent

meaning of these attributes can be useful� For example� consider a metaphor that

associates the spectrum of colors to a large range of temperatures� While speci
c

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 21

values would be hard to determine� the user could easily make comparisons and

determine general magnitudes of values�

As a result� in most cases text and pictures should be used to represent values

with large ranges� In some cases� when a general impression of the value is needed

instead of the exact value� other attributes can be used� Values with a smaller

range� such as entity�class kind from Section ���� may be represented by any type

of attribute�

5. Combining and Mixing Metaphors

Di�erent metaphors have di�erent characteristics� emphasis� space e�ciency� intu�

itiveness� and versatility� There is no single metaphor that is best for all schemas

and all situations� We believe that a schema visualization tool should support a va�

riety of metaphors and associated visual models� Users will be able to choose among

them so that the same data schema may be viewed as di�erent visual schemas� each

suitable for di�erent circumstances�

The use of di�erent metaphors may be taken one step further� by allowing the

use of di�erent metaphor correspondences for di�erent parts of the same visual

schema� This is faithful to the de
nition of metaphors in Section ���� which allows

correspondences between one data model primitive type and several visual model

primitive types� Such metaphors may originally be de
ned this way� or may be

de
ned as a combination of two simpler metaphors� This involves combining their

visual models into a single� uni
ed model� and combining the metaphors to map

from that model� The following section presents some example metaphors that will

be used to demonstrate the formal speci
cation of metaphor combination�

5.1. Example Visual Metaphors
Consider the data model D of entity�classes and relationships described in Section

���� Also consider the visual models� G� and G�� described in the following table�

Visual model G� is similar to G described in Section ���� Visual model G� has nodes

that are rectangles� and instead of using edges to represent a connection between two

nodes� it uses arrangements� Arrangements are formed from a text�display construct

and two nodes� a parent�node and child�node� The existence of an arrangement

a�ects the location of the child�node� The speci
c physical arrangement is de
ned

by a set of constraints which require node placement similar to a textual outline�

where subpoints appear below and indented to the right of the main points� It

should be noted that G� is a visual model not for general directed graphs but only

for trees� as any child node with multiple parents would have con�icting constraints

on its location� These models are accompanied by several composition constraints�

which are of no particular interest and are therefore not shown�

For each visual model� we de
ne a metaphor� The two metaphors are shown

in the table below� For brevity� the part of the metaphor that corresponds to

22 HABER� IOANNIDIS� AND LIVNY

the Tv function is not included� Visual metaphor T� � G� � D is similar to the

metaphor described in Section ���� except that it does not include the blob primi�

tive type� and entity�class�kind is represented by node�label�color� Visual metaphor

T� � G� � D is di�erent in that entity�class�kind is captured by node�color� and

that relationships are expressed as physical arrangements of the related nodes �as

described earlier�� Figure 	 gives examples of a simple schema displayed using each

of the metaphors� This example� drawn from the Cupid simulation model �Ioan�

nidis� Livny� and Haber� ������ shows a case where the outline metaphor is more

compact than the graph metaphor�

Model Primitive Type �P � Attribute �P�A� Attribute Values �R��P�A��

G� node shape fovalg

location plane�points

size f�

 pixelsg

color fwhiteg

label�text text

label�color fblue�redg

edge source�location plane�points

dest�location plane�points

color fred� orange� magenta� greeng

from�node I�node�

to�node I�node�

label�text text

label�color fblackg

G� node shape frectangleg

location plane�points

size f�

 pixelsg

color fyellow� browng

label�text text

label�color fblackg

arrangement label�text text

label�color fred� orange� magenta� greeng

label�location plane�points

parent�node I�node�

child�node I�node�

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 23

Clod Size

Bulk Density

Sand Fraction

Clay Fraction
Silt Fraction

Quartz Fraction

Real

Real

Real Real

Real

Real

Texture

Clod Size

Bulk Density

Sand Fraction

Clay Fraction

Silt Fraction

Quartz Fraction

Real

Real

Real

Real

Real

Real

Texture

Figure �� An example schema displayed using each of the two metaphors	

x � G� T��x�

node entity�class

node�label�text entity�class�name

node�label�color entity�class�kind

edge relationship

edge�label�text relationship�name

edge�from�node relationship�from�class

edge�to�node relationship�to�class

edge�label�color relationship�card�ratio

x � G� T��x�

node entity�class

node�label�text entity�class�name

node�color entity�class�kind

arrangement relationship

arrangement�label�text relationship�name

arrangement�parent�node relationship�from�class

arrangement�child�node relationship�to�class

arrangement�label�color relationship�card�ratio

24 HABER� IOANNIDIS� AND LIVNY

5.2. Combining Visual Models and Metaphors

In order to use di�erent metaphors for di�erent parts of a schema� the visual models

associated with these metaphors must be combined into a single model� In addition�

the metaphors themselves must be combined to form a uni
ed metaphor� mapping

from the combined visual model to the data model� Combining the visual models

ensures that the primitive types from di�erent models may be used together� and

that the metaphors themselves may be combined�

There are several abstractions that could be used to model the combination of

visual models and metaphors� any of which results in a valid� unambiguous� and

usable metaphor and schema mappings� These abstractions di�er in the level of

mixing that they permit of the visual models and metaphor functions� In this sub�

section� we discuss an abstraction that allows mixing at all levels� The subsequent

subsections describe correctness and quality issues involved in mixing metaphors

based on that abstraction�

For the visual models G� �� PG� �AG� �VG� �QG� �RG� � CG� � and G� �� PG� �AG� �

VG� �QG� �RG� � CG� �� consider their combination G �� PG� AG� VG� QG�

RG� CG �� By de
nition� for any primitive type P that is common to both vi�

sual models� the equality QG��P � � QG��P � holds� i�e�� the same primitive type has

the same attributes in all visual models that include it� The elements of the visual

models are combined as follows�

PG � PG� � PG�

AG � AG� � AG�

VG � VG� � VG�

CG � CG� � CG� �

Note that� based on the naming convention established in De
nition �� the above

equations imply that�

�P � PG� QG�P � � QG��P � � QG��P �

�P�A � AG� RG�P�A� � RG��P�A� � RG��P�A��

Given a combined visual model� two metaphors T� � Tp� � Ta� � Tv� and T� �

Tp��Ta��Tv� may be combined to form a uni
ed metaphor T � Tp�Ta�Tv where

Tp � Tp� � Tp�

Ta � Ta� � Ta�

Tv � Tv� � Tv��

5.3. Correct and Good Mixing of Metaphors

The result of combining two metaphors using the process shown in the previous

section must satisfy De
nition � in order for it to be a metaphor itself� Assume that

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 25

T� and T� are correct metaphors with respect to either viewing or updating data

schemas� Then� T� and T� are onto functions with possible additional properties of

totality and�or ���ness� When taking the union of Tx� and Tx� �for x � fp� a� vg��

totality and onto�ness can never be lost� ���ness may be lost when unioning� but it

is unrelated to correctness and only e�ects redundancy and choice in a metaphor

�Section ����� so it does not present a problem� Functionality� however� is necessary

for correctness and may be lost when unioning� In that case� T is not a correct

metaphor� implying that the original metaphors are not combinable� To correctly

combine T� and T�� the resulting Tp� Ta� and Tv must be functions�

The combined metaphor must also satisfy the criteria from Section ���� In addi�

tion� the new set of constraints established by unioning the constraints of the two

original visual models must contain no contradictions and should not exclude any

visual schema that was valid in the two original visual models� If any of the above

does not hold� then the original metaphors are not combinable�

We should emphasize once again that one could use a di�erent abstraction from

that described in Section ��� to combine metaphors� Such an abstraction would

possibly allow di�erent pairs of metaphors to become combinable� We have chosen

the above abstraction for its simplicity and because it captures several desirable

metaphor combinations�

5.4. Example Metaphor Combination

Consider the example metaphors from the previous section� When the two are

combined� the metaphor will appear as follows�

x T �x�

node entity�class

node�label�text entity�class�name

node�label�color entity�class�kind

node�color entity�class�kind

edge relationship

arrangement relationship

edge�label�text relationship�name

arrangement�label�text relationship�name

edge�from�node relationship�from�class

arrangement�parent�node relationship�from�class

edge�to�node relationship�to�class

arrangement�child�node relationship�to�class

edge�label�color relationship�card�ratio

arrangement�label�color relationship�card�ratio

26 HABER� IOANNIDIS� AND LIVNY

Where both original metaphors are the same� such as the mapping of entity�class

or entity�class�name� the combined metaphor is the same� Where the original

metaphors diverge� the combined metaphor either o�ers choice �as in the case of

relationships�� or redundancy �as with entity�class�kind��

The uni
ed visual model undergoes similar changes�

Primitive Type �P � Attribute �P�A� Attribute Values �R�P�A��

node shape foval� rectangleg

location plane�points

size f�

 pixelsg

color fyellow� brown� whiteg

label�text text

label�color fblue�red� blackg

edge source�location plane�points

dest�location plane�points

color fred� orange� magenta� greeng

from�node I�node�

to�node I�node�

label�text text

label�color fblackg

arrangement label text

label�color fred� orange� magenta� greeng

label�location plane�points

parent�node I�node�

child�node I�node�

Nodes existed in both of the original models� yet they had di�erent shapes� In

the combined model� a choice of shape exists� Figure
 gives an example of a

schema displayed using the mixed metaphor� Note how node shape is either oval

or rectangular� and how relationships may be displayed either using an edge or an

arrangement�

6. Visually Capturing Additional Information

The de
nition of models and metaphors allows the visual model to have greater

information capacity than the data model� Speci
cally� there may be more primitive

types in the visual model than in the data model� the visual model primitive types

used in the metaphor may have more attributes than their corresponding data

model primitive types� and the range of visual attribute values may be greater

than that of their corresponding data model attributes� It is possible to de
ne

the visual model to have the same information capacity as the data model� but

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 27

Company

StringName

Employee

Person

Name

Age

String

Int

Salary

Phone #

Address

Float

String

String

Department Product

Name

Employees

Floor

Address String

String

Int

Int

Product ID#

#produced

ProductType

Int

Int

String

ProductDepartment

Figure �� An example of a schema displayed using the combined metaphor	

often extra information capacity is valuable� Surplus information capacity may be

used in two ways� One is to enrich the metaphor� For example� the Tp� Ta and

Tv functions may be many�to�one� allowing redundancy and choice in representing

information� The other use of extra information capacity� and the subject of this

section� is to capture information outside of the data schema� This information may

be divided into two categories� presentation and personal data model information�

Presentation information has no meaning and simply improves the aesthetics of the

visual schema� The personal data model is a superset of the data model� additionally

containing information that is part of the user�s conception but not captured by the

database� These two kinds of information will be discussed in depth in this section�

6.1. Presentation Information

Presentation information is visual information that conveys no meaning to the

user� For example� the locations of nodes in a directed graph could be chosen for

purely aesthetic reasons� While not capturing any part of the data schema� this

information is important as it can a�ect the readability of a presentation� There

are many ways to lay out a directed graph� all having the same meaning� but some

are much more readable than others�

Presentation information is captured by those surplus visual model primitives

types and attributes that are not in the domain of the metaphor� and by the

attribute value and primitive type choices that are part of the metaphor� For an

28 HABER� IOANNIDIS� AND LIVNY

example of the use of extra primitive types� consider the visual model and metaphor

from Section ��� supplemented with the following primitive type�

Primitive Type �P � Attribute �P�A� Attribute Values �R��P�A��

rect shape f rectangle g

location plane�points

size integer � integer pixels

background�color f white g

border�color f black g

border�width f � g pixels

This rect is a black bordered rectangle of any given size and location� Not part

of the metaphor�s domain� it can be used freely without a�ecting the meaning of

a visual schema� For example� a rect could be placed around the entire schema to

give it a border and improve its appearance�

An example of surplus attributes may be found in the same metaphor� node�

location is not speci
ed by the mapping and can be freely speci
ed as mentioned

above� Similarly� the possibility of representing ��� relationships as either �green�

or �orange� edges allows the user aesthetic leeway without changing the meaning of

the visual schema�

Another means of capturing presentation information is through choice of visual

model primitive types� Di�erent primitive types may have very di�erent appear�

ances� a�ecting the aesthetics of the schema� For example� consider the combined

metaphor described in Section ���� It maps two visual primitive types� edge and

arrangement� to relationships� These visual primitive types have very di�erent

appearances and would be suitable in di�erent situations�

6.2. Personal Data Model Information

Databases are commonly used for holding information about real�world items� Data

schemas describe the organization of these items in as much detail as allowed by

the data model� Frequently� however� there exists other organizational information

about these items that might be helpful to the user� but is not or cannot be captured

by the data schema�

We introduce the notion of a personal data model to capture the organization

of the database from the user�s viewpoint� This is no di�erent from any other

data model� except for the fact that each user may have a di�erent personal data

model �while there is a single system data model� and also that each personal data

model must be an extension of the system data model� Accordingly� personal visual

metaphors may be de
ned from a visual model to personal data models to capture

the full range of characteristics of personal data schemas� as shown in Figure ��

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 29

Personal Model Personal Metaphor

Visual Model
Data Model Metaphor

Figure
� The Personal Data Model and Metaphor as Extensions of the Data Model and Visual

Metaphor

Such an extended metaphor would map visual model primitive types� attributes�

and values not used by the regular metaphor �i�e�� its excess information capacity�

to corresponding constructs of the personal data model that are not part of the

system data model�

As an example of a personal data model and its corresponding personal metaphor�

consider the data model of Section ���� whose primitive types are entity�class and

relationship� Like other object�oriented�semantic data models� this model does

not allow higher�level groupings of entity�classes or relationships� an ability that

could be very useful to a user� For example� a schema combining data from several

experiments could have entity�classes grouped by their original experiment� their

roles within the experiment �e�g�� input versus output�� whether their contents

are considered accurate� and their signi
cance to the user� Multiple simultaneous

orthogonal groupings may be captured this way� with an entity�class belonging to

several di�erent groups for di�erent reasons� This may be achieved by allowing a

user to extend the above data model so that groups can be captured� The visual

metaphor from Section ��� may also be modi
ed to represent group information to

the user� In the original metaphor� node size� label�color� shape� and location are

attributes that are not part of the metaphor mapping� If the visual model were

de
ned to allow these attributes a greater range of values� they could be used by the

personal metaphor to enhance the information that is captured visually� Figures

�� ��� and �� give examples of an unmodi
ed visual schema� grouping by location�

and grouping by shape and location� respectively�

7. Related Work

Visual presentation of abstract information has been studied for more than ������

years� from pigments on cave walls to ink on paper to phosphor on the inside of video

tubes� In its broadest sense� this
eld includes work in art� psychology� cognitive

science� human�factors engineering� and many branches of computer science� The

majority of this work deals with the evaluation of visualizations with respect to

human perception �exempli
ed by the work of Edward R� Tufte �Tufte� ����� Tufte�

������ A much smaller body of work is concerned with the process of creating

visualizations from abstract information� this work is concentrated in computer

30 HABER� IOANNIDIS� AND LIVNY

A

B C D E F

Figure �� A directed graph	

A

B CD E

F

Figure ��� Grouping by location	

A

B CD E

F

Figure ��� Grouping by location and shape	

science due to its need to communicate computer data to humans� It is this area

that is most closely related to our work�

There exist a large number of computer systems related to visualization� These

include visualization tools such as DBMS GUIs� which display data and schemas�

and computer assisted software engineering �CASE� tools� which create visualiza�

tions of data structures and program execution� On another level of abstraction

are user interface tools� which allow users to create visualization tools� All of these

systems are either explicitly or implicitly based on some conception of the process

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 31

of visualization� Our formalism describes processes of visualization� As such it can

be used as a means to classify and compare these other systems� and explain some

of their resulting characteristics�

Our formalism identi
es three distinct parts in the process of visualization�

� The data involved �the data model��

� The visualization �the visual model�� and

� A transformation between the data and visualization �the metaphor��

The separation into three declarative descriptions permits metaphors to be evalu�

ated� compared� and combined� It also allows personal data model and presentation

information to be dealt with separately from visual information dependent on the

metaphor�

In the following subsections� we use our formalism to evaluate visualization tools

and user interface tools� In these descriptions� we focus on two important aspects of

these systems� �� how the models and metaphors are de
ned� and �� whether or not

it is possible to de
ne or change the models and metaphors� These have an impact

on the ability to test visualizations for correctness� to combine metaphors� and to

supplement a visualization with personal data model and presentation information�

7.1. Visualization Tools

There are many computer tools for visualizing information� more than could be

adequately covered here� We will discuss two areas of visualization tools that deal

with structured information suitable to the models of our formalism� These are

DBMS GUIs� and CASE tools�

7.1.1. DBMS GUIs

All database systems have some means to present schemas and data� though often

the visual model is textual� Many systems do support GUIs with more advanced

presentations� their metaphors may be broken down into the following categories�

� Tables� which use rows and columns to indicate database structure� as with

QBE �Zloof� ��
�� and other systems �Heiler and Rosenthal� ����� Kuntz and

Melchert� ����� Ozsoyoglu� Matos� and Ozsoyoglu� ������

� Forms� which lay out information using a template that indicates structure�

such as �King and Novak� ���
� and most commercial database systems�

� Diagrammatic presentations� such as E�R�like Diagrams �Angelaccio� Catarci�

and Santucci� ����� Elmasri and Larson� ����� Leong� Sam� and Narasimhalu�

����� Miura� ����� Siau� Chan� and Tan� ����� Wong and Kou� ����� and

other directed and non�directed graphs �Bryce and Hull� ���	� Consens and

32 HABER� IOANNIDIS� AND LIVNY

Mendelzon� ����� Creasy� ����� Gupta� Weymouth� and Jain� ����� King and

Melville� ����� Lam� et al�� ����� Paredaens and Van den Bussche� ����� Batini�

et� al�� ����� Yoon� et al�� ���
��

� Icons �pictures� that represent a concept or action �Catarci� Constabile� and

Levialdi� ����� Kaneko and Hara� ���	� Tsuda� et al�� ������

For visualizing schemas� all of these systems have a
xed� hard�coded data model�

visual model and metaphor� Although diagrammatic representations seem to be

the most popular� the persistence of other approaches indicates that there is no

single best metaphor� This further demonstrates the importance of �exible schema

visualization� These systems lack �exibility� they o�er no choice in visualization�

and no justi
cation of their visual models and metaphors�

7.1.2. CASE Tools

CASE tools are environments to aid software development� One feature they usually

provide is visualization of program data structures and execution� These visualiza�

tions can help the user to better understand the operation of the software� In most

cases the data model� visual model� and metaphor are
xed� Evaluation� compar�

ison� and combination of metaphors is not possible� A few of these systems� such

as Incense �Myers� ������ allow user de
nition of the visual model and metaphor�

with alternate metaphors possible for a given data primitive type� These are de
ned

procedurally� however� so determination of metaphor correctness is not possible�

7.2. User-Interface Tools

User Interface tools assist programmers in creating graphical user interfaces� They

provide frameworks through which users can specify the appearance and interaction

characteristics of an interface� Part of the speci
ed interface may be a visualization

of information� as such these systems support the description of data visualizations�

We consider three kinds of user interface tools� general tools� tools built on top of

DBMSs� and automatic tools�

7.2.1. General User Interface Tools

General user interface tools allow the user to create a visual model for a visualiza�

tion� though they use a variety of means to describe it� For example� the Chiron��

�Taylor and Johnson� ����� and Motif �OSF� ����� systems rely upon procedural

speci
cations� where the user describes the structure of the visualization through

calls to a library� Marquise �Myers� McDaniel� and Kosbie� ����� is an example

of a demonstrational system� where the user speci
es the appearance and behav�

ior of an interface by drawing and laying out objects on the screen� InterViews

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 33

�Linton� Calder� and Vlissides� ����� is similar� allowing the user to specify inter�

face appearance by laying out special objects in a graphical editor� Behavior of

the interface� however� must be speci
ed procedurally in InterViews� HUMANOID

�Szekely� Luo� and Neches� ����� and UIDE �Sukavariya� Foley� and Gri�th� �����

allow description of data and visual models through expressions in formal modeling

languages�

Most of these systems also allow speci
cation of a metaphor� though in some

cases the metaphor is closely tied to the visual model� HUMANOID embeds in each

visual model primitive type a procedural description of the data to be presented�

Lower level toolkits such as Motif and InterViews require procedural speci
cations

of all parts of the data model and metaphor� Chiron also speci
es metaphors

�called �artists�� procedurally� though they are separate from the visual model�

All of these systems allow use of di�erent metaphors �e�g�� the InterViews package

was used to create our tool based on the formalism�� UIDE does not support

a metaphor as described in our formalism� It de
nes correspondences between

visual and data model primitives� but not between attributes or values� Instead

it establishes correspondences between actions on visual model objects �such as a

click of the mouse� and actions on data model objects �such as a change in a value��

Marquise does not support a data model as distinct from the visual model� and as

such does not need metaphors� None of these systems allows declarative de
nition

of metaphors� As a result� they cannot test metaphors or metaphor combinations

for correctness� nor can they evaluate or compare metaphors�

7.2.2. DBMS User Interface Tools

A related area is DBMS User Interface tools� These include O�Look�ToonMaker

�Borras� et al�� ������ ODDS �Flynn and Maier� ������ FaceKit �King and Novak�

������ and Picasso �Rowe� et al�� ������ These tools are oriented toward building

interfaces� but unlike other interface toolkits� they also interact with a database

explicitly� using it to store interface information and simplifying the speci
cation

of visualizations for database objects� A related system is DOODLE �Cruz� ������

which provides a visual language for querying an OODBMS and de
ning visualiza�

tions of database objects�

These systems use the data model of the underlying database as the data model�

Each allows de
nition of the visual model in a di�erent manner� ToonMaker pro�

vides an interactive visual editor for creating visual primitives� ODDS uses declar�

ative descriptions� FaceKit procedurally speci
es visualizations in methods of the

object class to be displayed� and Picasso uses widgets de
ned in Lisp� These sys�

tems do allow di�erent visualizations for any data object� As with many of the user

interface tools described above� however� these systems do not represent metaphors

as separate from visualizations� the de
nition of a visual item is tied to the database

item it is to represent� Lacking a separate metaphor� these systems do not evaluate

or compare visualizations� or test metaphor combinations for consistency�

34 HABER� IOANNIDIS� AND LIVNY

7.2.3. Automatic User Interface Tools

Some user interface tools automatically generate presentations from a description of

the data �DON �Kim and Foley� ������ Dost �Dewan and Solomon� ������ GENIUS

�Janssen� Weisbecker� and Ziegler� ������ TRIDENT �Vanderdonckt and Bodart�

������ using a set of prede
ned rules to determine presentation and interaction�

These rules are analogous to metaphors in that they describe the mapping from data

to visualization� The rules are hard�wired� however� so they cannot be changed or

combined� Thus� there is no determination of metaphor correctness� no possibility

of mixing� and no �exibility in the use of non�data model information�

7.3. Other Formalism Work

The work of Kuhn and Frank �Kuhn and Frank� ����� is related to our work�

yet covers a di�erent area� It uses algebraic mappings to study the behavior of

user interfaces� For example� it considers the similarities and di�erences between

operations on a physical desktop� and those on a computer�s virtual desktop� This

permits evaluation of correctness of the behavioral aspects of visual metaphors� An

earlier paper on the same subject by these authors �Kuhn� Jackson� and Frank�

����� encouraged some of our early ideas that grew into our formalism�

8. Conclusions and Future Work

In this paper� we have presented a formalism for visual metaphors and described

how it may be used to improve the visual presentation of data schemas� This

formalism allows high level description of the correspondence between data and

visual models� This description allows simpler de
nition of metaphors� easier eval�

uation and comparison of metaphors� and combination of di�erent metaphors� The

formalism can help improve schema visualizations in the many roles they play�

Currently� a large part of the formalism has been implemented as a schema editing

tool� Arbitrary data models� visual models� and metaphors between them can be

de
ned� although in a hard�wired manner� �Our future work includes enhancing

the interface to allow users to de
ne all of these dynamically�� The user can create

and modify visual schemas using direct�manipulation tools� these visual schemas

are translated to the appropriate data schemas based on the metaphor� We have

tested the system with various metaphors and data models and it works well� though

limited space precludes a more lengthy description of the schema editing tool in

this paper�

Future work includes completing the schema editing tool� Two areas require ef�

fort� allowing user de
nition of di�erent visual models and metaphors� and creating

a su�ciently expressive language for specifying all necessary constraints� In addi�

tion� the formalism should be examined for solutions to the problems of displaying

very large schemas� which are common in scienti
c databases �where schemas with

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 35

thousands of classes and tens of thousands of relationships are common�� The

various formalism criteria for distinguishing metaphors need to be examined for

testability� some may be undecidable �e�g�� visual ambiguity�� Furthermore� the

formalism should be expanded to include �views�� visualizations that contain sub�

sets of data model information� It is also important to determine applicability of

the formalism to data models beyond the object�oriented model with which we

work� databases based upon other current models� and earlier models in legacy sys�

tems �e�g�� the network or un�normalized relational models� would also bene
t from

improved schema visualization� Finally� once the formalism and the system based

on it are su�ciently developed� it will be important to evaluate them empirically�

Such an experiment would demonstrate the advantages and disadvantages of our

formal approach to visualization�

Acknowledgements

Dr� Ioannidis� work has been partially supported by the National Science Founda�

tion under Grants IRI�����
�	� IRI�����
��� and IRI����
�	� �PYI Award� and

by grants from DEC� IBM� HP� AT�T� and Informix� Dr� Livny�s work has been

partially supported by the National Science Foundation under Grant IRI�����
���

Special thanks to Janet Wiener and Renee Miller for their proofreading� without

whom this paper would have been more dense and less clear�

Notes

�	 The term metaphor is sometimes used to describe behavior of visualizations as well as appear�

ance	 We do not consider behavior in this paper	

�	 For simplicity� we use the names of attributes directly instead of their corresponding full

identi�ers� i	e	� A instead of P�A	 This also holds for all other models presented in this paper

and applies to any constraints that are shown as well	

�	 Note that if P does not have an image under Tp� then QD�Tp�P �� is the empty set	 Therefore

T
P
a is empty as well which makes it vacuously an onto function	 Similar observations hold for

T
P�A

v 	

�	 Non�onto functions and non�functional correspondences will prove useful in extending meta�

phors to allow visualizations of subsets of data schema information� part of our future work	

References

M	 Angelaccio� T	 Catarci� and G	 Santucci	 QDB�� A Graphical Query Language with Recursion	

IEEE Transactions on Software Engineering� pages ��
������� October ����	

R	 Agrawal� N	H	 Gehani� and J	 Srinivasan	 OdeView� The Graphical Interface to Ode	 SIGMOD

Record� pages ������ ����	

C	 Batini� T	 Catarci� M	F	 Costabile� and S	 Levialdi	 Visual Query Systems� A Taxonomy	 In

IFIP Conference on Visual Database Systems� ����	

D	 Bryce and R	 Hull	 SNAP� A Graphics�based Schema Manager	 In Proceedings of the

International Conference on Data Engineering� pages �
������ ����	

36 HABER� IOANNIDIS� AND LIVNY

A	 J	 Benjamin and K	 M	 Lew	 A Visual Tool for Managing Relational Databases	 In Proceedings

of the International Conference on Data Engineering� ����	

P	 Borras� J	C	 Mamou� D	 Plateau� B	 Poyet� and D	 Tallot	 Building user interface for database

applications	 SIGMOD Record� pages ������ March ����	

T	 Catarci� M	F	 Costabile� and S	 Levialdi	 Iconic and Diagramatic Interfaces� an Integrated

Approach	 In IEEE Workshop on Visual Languages� ����	

M	 Consens and A	 Mendelzon	 GraphLog� a Visual Formalism for Real Life Recursion	 In T	I	

Kunnii� editor� Visual Database Langauges� pages ������
	 North�Holland� Amsterdam� The

Netherlands� ����	

P	 Creasy	 ENIAM� A More Complete Conceptual Schema Language	 In Proceedings of the

International Conference on Very Large Data Bases� pages �������� ����	

I	 F	 Cruz	 DOODLE� A Visual Language for Object�Oriented Databases	 In Proceedings of

ACM SIGMOD International Conference on Management of Data� pages ������ June ����	

P	 Dewan and M	 Solomon	 An Approach to Support Automatic Generation of User Interfaces	

ACM Transactions on Programming Languages and Systems� ������
������� October ����	

M	 Egenhofer and A	 Frank	 Towards a Spatial Query Language� User Interface Considerations	

In Proceedings of the International Conference on Very Large Data Bases� pages p��� � ����

����	

R	 Elmasri and J	 Larson	 A Graphical Query Facility for ER Database	 In Proceedings of the

��
� IEEE Conference on the E�R Approach� pages ������
� ���
	

B	 Flynn and D	 Maier	 Supporting Display Generation for Complex Database Objects	 SIGMOD

Record� pages ������ March ����	

J	 D	 Foley� A	 van Dam� S	 K	 Feiner� and J	F	 Hughes	 Computer Graphics
 Principles and

Practice	 Addison�Wesley� Reading� Massachusetts� ����	

A	 Gupta� T	 Weymouth� and R	 Jain	 Semantic Queries with Pictures� The VIMSYS Model	 In

Proceedings of the International Conference on Very Large Data Bases� pages ������ ����	

S	 Heiler and A	 Rosenthal	 G�Whiz�� a Visual Interface for the Functional Model with Recursion	

In Proceedings of the International Conference on Very Large Data Bases� pages �������� ���
	

Y	 Ioannidis and M	 Livny	 Data Model Mapper Generators In Observation DBMSs	 In Hetero�

geneous DB Workshop� December ����	

Y	 Ioannidis and M	 Livny	 Conceptual Schemas� Multi�Faceted Tools for Desktop Scienti�c

Experiment Management	 International Journal of Intelligent and Cooperative Information

Systems� ����� December ����	

Y	 Ioannidis� M	 Livny� and E	 M	 Haber	 Graphical User Interfaces for the Management of

Scienti�c Experiments and Data	 SIGMOD Record� pages ���
�� March ����	

Y	 Ioannidis� M	 Livny� E	 M	 Haber� R	 Miller� O	 Tsatalos� and J	 Wiener	 Desktop Experiment

Management	 IEEE Data Engineering Bulletin� ������������ March ����	

C	 Janssen� A	 Weisbecker� and J	 Ziegler	 Generating User Interfaces from Data Models and

Dialogue Net Speci�cations	 In INTERCHI ���� Proceedings of the Conference on Human

Factors in Computing Systems� pages �������� April ����	

W	 Kuhn and A	 U	 Frank	 A Formalization of Metaphors and Image�Schemas in User Interfaces	

In H	M	 Mark and A	U	 Frank� editors� Cognitive and Lunguistic Aspects of Geographic Space�

pages �������	 Kluwer Academic Publisher� Amsterdam� The Netherlands� ����	

W	 C	 Kim and J	 D	 Foley	 Providing High�level Control and Expert Assistance in the User

Interface Presentation Design	 In INTERCHI ���� Proceedings of the Conference on Human

Factors in Computing Systems� pages �������� April ����	

A	 Kaneko and Y	 Hara	 A Multimedia Document Base System for O�ce Work Support	 In

IEEE COMPSAC� pages �������� ����	

W	 Kuhn� J	 P	 Jackson� and A	 U	 Frank	 Specifying Metaphors Algebraically	 SIG CHI Bulletin�

January ����	

R	 King and S	 Melville	 SKI� A Semantic�Knowlegeable Interface	 In Proceedings of the Inter�

national Conference on Very Large Data Bases� pages ������ ����	

M	 Kuntz and R	 Melchert	 Pasta���s Graphical Query Language� Direct Manipulation� Cooper�

ative Queries� Full Expressive Power	 In Proceedings of the International Conference on Very

Large Data Bases� pages �����
� ����	

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 37

R	 King and M	 Novak	 Freeform� A User�Adaptable Form Management System	 In Proceedings

of the International Conference on Very Large Data Bases� pages �������� ����	

R	 King and M	 Novak	 FaceKit� A Database Interface Design Toolkit	 In Proceedings of the

International Conference on Very Large Data Bases� pages ��
����� ����	

R	 King and M	 Novak	 Building Reusable Data Representations with FaceKit	 SIGMOD Record�

pages ������ March ����	

H	 Lam� H	 M	 Chen� F	 S	 Ty� J	 Qiu� and S	Y	W	 Su	 A Graphical Interface for an Object�

Oriented Query Language	 In IEEE COMPSAC� pages ������
� ����	

M	 A	 Linton� P	 R	 Calder� and J	 M	 Vlissides	 InterViews� A C�� Graphical Interface Toolkit	

Technical Report CSL�TR�����
�� Stanford University� July ����	

M	 Leong� S	 Sam� and D	 Narasimhalu	 Towards a Visual Language for an Object�Oriented

Multi�Media Database System� pages ��
���
	 Elsevier Science Publishers B	V	� ����	

R	 Miller� Y	 Ioannidis� and R	 Ramakrishnan	 The use of information capacity in schema

integration and tran slation	 In Proc� ��th Int� VLDB Conference� Dublin� Ireland� August

����	

T	 Miura	 A Visual Data Manipulation Language for a Semantic Data Model	 In IEEE COMP�

SAC� pages �������� ����	

J	C	 Mamou and C	 B	 Medeiros	 Interactive Manipulation of Object�Oriented Views	 In

Proceedings of the International Conference on Data Engineering� pages ������ ����	

B	 A	 Myers� R	 G	 McDaniel� and D	 S	 Kosbie	 Marquise� Creating Complete User Interfaces

by Demonstration	 In INTERCHI ���� Proceedings of the Conference on Human Factors in

Computing Systems� pages �������� April ����	

D	 Maier� P	 Nordquist� and M	 Grossman	 Displaying Database Objects	 Technical Report CS�E

������� Oregon Graduate Institute� January ����	

A	 Motro	 BAROQUE � a Browser for Relational Database	 ACM TOIS� ������������� April

����	

B	 A	 Myers	 INCENSE� A System for Dispalying Data Structures	 Computer Graphics�

��������
���
� July ����	

G	 Ozsoyglu� V	 Matos� and Z	 M	 Ozsoyglu	 Query Processing Techniques in the Summary�

Table�by�Example Database Query Language	 ACM Transactions on Database Systems� pages

���
��� December ����	

Open Software Foundation� Englewood Cli�s� New Jersey	 OSF�Motif Style Guide� Revision ����

����	

J	 Paredaens and J	 Van den Bussche	 An Overview of GOOD	 SIGMOD Record� pages �
����

March ����	

L	 Rowe� J	 Konstan� B	 Simth� S	Seitz� and C	 Lin	 The Picasso Application Framework	

Technical Report UCB�ERL M������ University of California� Berkeley� March ����	

K	L	 Siau� H	C	 Chan� and K	P	 Tan	 Visual Knowledge Query Language as a Front�end to

Relational Systems	 In IEEE COMPSAC� pages �������� ����	

P	 �Noi� Sukavariya� J	 D	 Foley� and T	 Gri�th	 A Second Generation User Interface Design

Environment� The Model and The Runtime Architecture	 In INTERCHI ���� Proceedings of

the Conference on Human Factors in Computing Systems� pages ��
����� April ����	

M	 Stonebraker and J	 Kalash	 TIMBER � A Sophisticated Relational Browser	 In Proceedings

of the International Conference on Very Large Data Bases� pages ����� ����	

P	 Szekely� P	 Luo� and R	 Neches	 Beyond Intferface Builders� Model Based Interface Tools	

In INTERCHI ���� Proceedings of the Conference on Human Factors in Computing Systems�

pages �������� April ����	

K	 Tsuda� M	 Hirakawa� M Tanaka� and T	 Ichickawa	 Iconic Browser� An Iconic Retrieval System

for Object�Oriented Databases	 Journal of Visual Languages and Computing� �� ����	

R	N	 Taylor and G	 F	 Johnson	 Separation of Concerns in the Chiron�� User Interface Develop�

ment and Management System	 In INTERCHI ���� Proceedings of the Conference on Human

Factors in Computing Systems� pages �������� April ����	

E	 R	 Tufte	 The Visual Display of Quantitative Information	 Graphics Press� Cheshire� Conn	�

����	

E	 R	 Tufte	 Envisioning Information	 Graphics Press� Cheshire� Conn	� ����	

38 HABER� IOANNIDIS� AND LIVNY

J	 M	 Vanderdonckt and F	 Bodart	 Encapsulating Knowledge For Intelligent Automatic Interac�

tion Objects Selection	 In INTERCHI ���� Proceedings of the Conference on Human Factors

in Computing Systems� pages �������� April ����	

H	 K	 T	 Wong and I	 Kou	 GUIDE� Graphical User Interface for Database Exploration	 In

Proceedings of the International Conference on Very Large Data Bases� pages ������ ����	

B	 D	 Yoon� B	 Do� F	 Suzuki� H	 Ishikawa� and A	 Makinouchi	 Experimental Multimedia DBMS

Ising an Object�Oriented Approach	 In IEEE COMPSAC� pages �������� ����	

M	 Zloof	 Query�by�Example� The Invocation and De�nition of Tables and Forms	 In Proceedings

of the International Conference on Very Large Data Bases� ���
	

