
A1: Spreadsheet-based Scripting
for Developing Web Tools

Eben M. Haber, Eser Kandogan, Allen Cypher, Paul P. Maglio, and Rob Barrett
– IBM Almaden Research Center

ABSTRACT

A1 is a Java-based spreadsheet environment that enables system administrators to builA1 is a
Java-based spreadsheet environment that enables system administrators to build small tools that
simplify and automate common tasks, integrating real-time data across heterogeneous systems. A1
spreadsheets can be saved to a central repository, where they are published and shared as
interactive web portlets. In this paper, we discuss the need for administrators to create their own
tools, how the A1 environment is designed to support this need, and how A1’s support for web
publishing-without requiring special web programming-can enable teams to share, modify, and
improve their tools. We also discuss the design and implementation of A1, and show a number of
sample spreadsheets for various administration tasks.

Introduction

System administration frequently involves the
development of custom scripts to manage the unique
requirements of each site. Typically, these scripts pro-
vide functionality lacking in commercial software
tools because vendors cannot anticipate every task for
every possible configuration in their tools. Custom-
built scripts range from a few lines of code developed
by a single administrator to speed a commonly exe-
cuted task, to significant software systems developed
by a team of people over several years.

Collaboration is a common aspect of system admin-
istration work. At most sites, expertise is distributed
across teams who work together to design, implement,
and maintain systems, and to troubleshoot problems. Sys-
tem administrators often share scripts as they collaborate
on a task, or they pass scripts to others working on simi-
lar tasks. Scripts are often modified, customized, and
improved, as they pass from person to person.

In the course of system administration field stud-
ies, we have observed several difficulties in existing
scripting practices. Coordinated script use between
different administrators can be hindered by a lack of
central script repositories, inconsistent script versions,
and varying execution environments. Web-based
scripts provide consistent access and execution, but
are difficult to develop. Many administrators lack the
skills needed to field web applications, such as cgi
scripting or J2EE servlet programming. Finally, we
have seen many cases where the complexity of com-
mon scripting languages (e.g., Perl, Python, and shell
scripts) prevented administrators from modifying and
reusing existing scripts for their own purposes.

Though sometimes these issues result from lim-
ited programming experience, more frequently script
sharing problems are due to insufficient documenta-
tion, hidden assumptions and hard-coded constants.

All too often administrators who need a certain tool
‘‘re-invent the wheel,’’ rewriting it themselves instead
of building on existing scripts.

We developed A1 to enable system administra-
tors to quickly develop custom web-based tools and to
more easily share, reuse, and improve tools collabora-
tively. A1 is a spreadsheet-like environment that
allows system administrators to invoke existing scripts
or access remote systems via standard protocols, such
as SSH, JMX and SNMP. A1 includes a task-specific
scripting language so that connections to servers can
be opened in a spreadsheet cell, and server actions can
be triggered by changes to cell values. Sysadmins can
save spreadsheets to a shared repository and then exe-
cute them from a web browser as interactive web
portlets. A1 also provides a plug-in architecture to add
support for new components.

A1 is not meant to replace existing scripting lan-
guages, such as Perl and Python. The power and flexi-
bility of these languages will continue to be important
for advanced users and experienced programmers cre-
ating complex tools. Rather, A1 is intended to provide
an environment for a broader population of system
administrators to create small tools that can be quickly
and easily deployed and shared via the web. A1
spreadsheets can be also be used as a control layer to
execute and manage the output of existing scripts
developed in other languages. In summary, system
administrators using A1 can build and share spread-
sheets to access remote, heterogeneous systems,
gather and integrate real-time data, and control various
systems uniformly through a web-interface.

Background

Over the past three years, we conducted a series
of field studies of system administration work. The
study sites included large enterprise, university, and

2005 LISA XIX – December 4-9, 2005 – San Diego, CA 1

A1: Spreadsheet-based Scripting for Developing Web Tools Haber, et al.

government research environments. We made fourteen
visits to six different sites, examining web hosting,
database, operating system, security, and storage
administration. We interviewed and surveyed system
administrators about their work. We recorded a total of
50 days of video following normal, day-to-day activi-
ties. The results are primarily qualitative, providing a
picture of typical work practices, tools, and problems
faced by system administrators.

In these field studies, we made the following
observations relevant to administrators’ use of script-
ing and tools:

1) Collaboration is important for system administra-
tors. Because no single individual can be an
expert in every aspect of a large installation,
responsibility is typically spread across people
and organizations. During complex configuration
or troubleshooting, collaboration is essential to a
successful resolution. For example, in a detailed
analysis of one lengthy troubleshooting session,
we found that 90% of one system administrator’s
time was spent communicating with others, and
that misunderstandings greatly delayed finding
the solution [1]. In such an environment, there is
great potential for improving effectiveness of
system administrators by providing tools that
allow them to better collaborate, communicate
system status, and share control.

2) System administrators frequently create small
custom tools to accomplish specific tasks.
Administration tasks are complicated given the
heterogeneous nature of most systems, with
many components from different vendors and
distinct local requirements. It is therefore not
surprising that many tasks are not directly sup-
ported by vendor-supplied tools. We observed
system administrators creating small tools on-
the-fly to solve problems and collect informa-
tion. Only one site we observed had a script
repository, though the procedures regulating
script publishing limited its use.

3) The programming abilities of system administra-
tors vary tremendously. The system administra-
tors we observed were very familiar with shell
scripting, but general software and web develop-
ment skills were usually not part of their job
requirements. We observed the majority of scripts
created by gurus. Novices would use scripts writ-
ten by others, but they often did not feel comfort-
able modifying the scripts or creating their own.
Other administrators between the novices and
gurus would develop scripts occasionally, but
often had trouble understanding and modifying
scripts written by others. Administration work
could be aided by easier-to-use and reuse script-
ing environments.

4) Administrators frequently integrate information
gathered from different tools and different

systems. This is especially true for heterogeneous
systems containing components from different
vendors in which each component requires a sep-
arate tool for access or configuration. Adminis-
trating heterogeneous environments could be
improved by meta-tools that access and integrate
information from many sources.

Successful tools and best practices often evolve
and improve when custom tools are easy to create,
modify, and share. Although web applications are read-
ily accessible, only advanced users possess the skills to
create them. Our goal with A1 is to provide an environ-
ment where most system administrators can create,
share, and reuse custom web-deployable tools that inte-
grate information from different systems. We want to
leverage existing, common scripting abilities so that
more administrators can create interactive web apps
‘‘ f o r free,’’ without having to become experts in cgi
scripting or J2EE servlet programming. We also believe
that shareable, web-based tools will be of significant
value in aiding system administrators to collaborate.

Design

The primary challenges in creating a scripting
language and environment for system administration
are ease-of-learning to lower the barrier to entry for
busy system administrators, providing broad solutions
in heterogeneous environments, and enabling script
sharing and reuse for teams of administrators.

To address these challenges, we took a spread-
sheet-based approach. Over several decades, spread-
sheets have proven to be easy-to-learn tools, particu-
larly because of their straightforward programming
style. Many system administrators already use spread-
sheets as part of their regular work. The spreadsheet
programming model encourages incremental coding,
putting part of a calculation in one cell, using the out-
put in a formula in another cell, and so on. Spread-
sheets are also more robust than most scripting lan-
guages-the nature of spreadsheet execution means that
errors only affect dependent cells, and do not neces-
sarily invalidate the entire sheet.

The grid simplifies visual layout significantly, a
common problem for less experienced programmers.
Finally, the co-location of values and formulas in cells
enables users to select a value and see the formula that
defined it. This can help users understand and modify
others people’s sheets for their own use.

A1 extends traditional spreadsheets by (1) per-
mitting cells to contain arbitrary Java objects, in addi-
tion to numbers, strings, etc., (2) extending cell formu-
las to include calls to methods of cell objects, and (3)
allowing cells to contain procedural code blocks
whose execution is triggered by events in the sheet. As
with most changes that increase functionality, these
extensions impact ease-of-use, but we believe the
impact is small and the benefit large. Our use of Java

2 2005 LISA XIX – December 4-9, 2005 – San Diego, CA

Haber, et al. A1: Spreadsheet-based Scripting for Developing Web Tools

takes advantage of a large base of existing libraries,
particularly for IT management.

Figure 1: A JVM memory utilization monitor running in the A1 Client.

However, it is important to note that in A1 users
do not need a deep understanding of Java. It is suffi-
cient to know that objects have methods that can be
called to change or return information about the state
of the object. Procedural code blocks are triggered in a
conceptually straightforward manner, either by
changes to the value of specified cells or by cell for-
mulas that evaluate to true. The conceptual model for
execution is straightforward: ‘‘when something hap-
pens, perform these actions.’’ The procedural code
itself is written in a simple scripting language, with
constructs for assignment, branching, looping, and cell
method calls. Users familiar with shell scripting would
find the A1 code language similar, and easy-to-learn.
We also included traditional spreadsheet help features,
such as pop-up menus on cell objects, so that users are
not required to memorize all commands, functions, or
methods-greatly improving A1’s learn-ability through
exploration.

A1 can be used to create broad solutions, tying
together multiple scripts across different languages
and systems. Within an A1 spreadsheet, each cell can
invoke a different script and display its output, inte-
grating the output of multiple tools or systems in one
spreadsheet. Spreadsheets also bridge the gap between
command-line scripts and graphical interfaces. With
A1, users can push script output into charts and

graphs, easily creating data visualizations of critical
system status and performance. Data visualizations are
currently under-used simply because they are too hard
to create in most command-line environments, and
vendor-supplied visualization tools are seldom suffi-
ciently customizable.

However, A1 brings together useful qualities of
both command-line (efficiency) and graphical interac-
tion (ease-of-use). The spreadsheet layout also pro-
vides ample room for comments and explanation that
can be co-located with command output. While all
scripting languages permit diligent users to add their
comments to help others understand script execution,
such comments are often sparse due to programming
under time pressure and the fact that comments do not
improve script execution or usability; the beneficiary
of comments is usually some one other than the script
author. Adding comments to a spreadsheet immedi-
ately improves the sheet’s usability because the com-
ments are visible at execution time and can help clar-
ify the sheet’s operation.

To better enable script sharing and reuse, the A1
spreadsheet execution engine supports multiple ren-
dering platforms. Spreadsheets are created using a
stand-alone client-based tool with full interactivity,
however the same spreadsheets can be saved to a cen-
tral repository and executed without modification as
J2EE-based portlets on a web server. We have inte-
grated A1 with the ISC portal server, which IBM

2005 LISA XIX – December 4-9, 2005 – San Diego, CA 3

A1: Spreadsheet-based Scripting for Developing Web Tools Haber, et al.

developed as a one-stop portal for system administra-
tion. ISC includes many vendor-provided portlets for
managing middleware products. Spreadsheets created
by A1 will appear much the same as vendor-supplied
system management portlets, with the additional
option to edit existing tools or create new tools on-the-
fly, extending the toolset with no installation and
deployment requirements.

The A1 User Interface

As shown in Figure 1, the A1 interface appears
very much like other spreadsheets, with a grid of cells,
a cell expression editing field, toolbars and menus.
Indeed, A1 supports all standard spreadsheet function-
ality: cells can contain strings, numbers, dates, and
formulas that define a cell’s value as a function of
other cells. The primary difference is that A1 also sup-
ports Java objects as first-class cell contents, object-
methods in cell expressions, and event-driven proce-
dural code in cells. A1’s enhancements to the spread-
sheet language and execution engines enable users to
easily build powerful tools that interact with live sys-
tems. A1 spreadsheets may also be deployed as web-
based portlets. These features are described detail in
the following sections.

Objects As First-Class Cell Contents

To support system administrators’ needs for con-
trol of external systems, A1 adopted an object-based
approach. Cells in A1 can contain any Java object, and
cell formulas can refer to object methods. For exam-
ple, if the cell A1 were defined as follows (in this
paper, cell definitions will be shown with the cell
name in brackets, followed by the contents of the cell):

[A1] java.util.LinkedList()

then A1 would hold a Java LinkedList object from the
java.util package. Other cells can refer to this object’s
methods, for example A2 might be defined with a for-
mula such as:

[A2] = A1.size()

so that A2 would always display a value indicating
A1’s linked list’s size. References to objects and cell
values can be mixed, for example cell A3 might be
defined to use the LinkedList get() method, which
returns the element at the specified index:

[A3] = A1.get(A2-1)

This would cause cell A3 to hold whatever value is at
the end of the linked list (the list is zero-based, so the
(size-1)th element is the last). Note that A1 uses weak
typing when matching objects to parameters. For
example, numbers are automatically converted to
strings and vice versa depending on the context and
methods involved. From a programming standpoint,
enabling cells to contain Java objects gives the user
access to a large library of objects that provide support
for programming needs, such as containers, I/O, statis-
tics, data processing, and networking. From a system

administration standpoint, users can immediately
leverage a variety of existing administration APIs
implemented in Java.

One important issue is how to render Java objects
in a spreadsheet. In A1, each object class is associated
with an interactor that specifies how it will be ren-
dered on the screen and how the user may interact with
it. Default interactors have been defined for most com-
mon object classes, though A1 allows users to change
these defaults. Users can also define interactors for
new object classes in their plug-in objects. A1 sup-
ports graphical rendering and interaction with objects.
For example, a Boolean object can be rendered graphi-
cally as a CheckBox, or a NumberCollection can be
rendered as an X-Y plot. If there are no interactors
defined for an object, it is rendered textually using the
default toString() method available in every Java class.

Interactors are designed to work on multiple plat-
forms. In the current implementation, A1 supports
three platforms: Java/Swing-based client, HTML-based
portal server, and text-based command-line. Each inter-
actor defines how to render and process events in each
platform; for example, on the Java/Swing platform the
interactor renders a Button and handles button presses
in a standard GUI panel, and on the portal server plat-
form the interactor automatically renders the Button as
an HTML form input element.

For improved ease-of-use for those unfamiliar
with Java, A1 provides a library of Java objects cus-
tomized for spreadsheet use with a simplified set of
methods and predefined interactors. These objects can
represent rich data types (e.g., collections, queues,
stacks), connections to external systems (e.g., SSH,
SNMP, JMX), graphical widgets (e.g., Button,
TextBox, ComboBox), and visualizations (e.g., X-Y
plot, pie chart). Toolbar buttons exist for creating these
objects, allowing the user, for example, to point and
click to create an object that manages a server connec-
tion. A1 includes a plug-in API for incorporating new
Java objects into the framework.

Experienced Java programmers can use this API
to enhance existing objects with new interactors or
with more sophisticated triggering mechanisms (e.g.,
pushing events into the spreadsheet, externally trigger-
ing spreadsheet re-evaluation). The API also allows
customized objects to be added to the toolbar, permit-
ting easier use of new objects in the spreadsheet. We
believe the success of A1 will depend to a large degree
on a rich set of domain-specific objects permitting
access a wide variety of systems. We have provided a
core set of spreadsheet friendly objects, but we hope
that users take advantage of the API to create and
share many more.

Event-driven Procedural and Functional Code

We found the strictly functional programming
model of traditional spreadsheets insufficient in defining
sophisticated control flows necessary for developing

4 2005 LISA XIX – December 4-9, 2005 – San Diego, CA

Haber, et al. A1: Spreadsheet-based Scripting for Developing Web Tools

system administration tools. To enable richer control
flow, A1 extends the spreadsheet language to permit
cells to include event-driven procedural code blocks.
These ‘‘micro-scripts’’ usually include a trigger indicat-
ing when the procedural code block should be executed,
either by a change in value for any of a list of cells, e.g.,

on (<cell address list>)
{ <procedural code block> }

or a boolean expression written in the same form as
cell formulas, e.g.,

when (<boolean expression>)
{ <procedural code block> }

Continuing the example above, we might add code to
clear the LinkedList contents automatically when its size
exceeds 10 elements by putting the following in cell A4:

[A4] when (A1.size() > 10)
{A1.clear()}

When the object in cell A1 changes, the size method is
called. If the size is greater than 10, the linked list is
emptied by the clear method. In general, code blocks
can be triggered to execute upon changes to cell val-
ues, clock ticks, button presses, or any spreadsheet
events. Procedural code blocks are written in a simple
scripting language containing one or more semicolon
delimited statements. A statement can call an object
method (e.g., A1.clear()) or assign a new value to a cell
(e.g., A10 = A3 * 10).

There is also support for conditional branching
using an if statement, and iteration with a for statement
(both of which work as in C or Java). When code
blocks have no trigger expression, they must be
explicitly executed from other code blocks by using
the cell address as a statement (e.g., A4()). Code blocks
may also force formula re-evaluation and code execu-
tion by using the touch statement (e.g., touch A1),
which triggers all dependent cells as if the cell value
(e.g., A1) has changed.

It is important to note that in A1 users can assign
names to cells to improve readability of the code. For
example, code in A5 can be named ‘‘insert’’:

[A5] insert: {A1.add("10.0")}

and referenced in subsequent code blocks:

[A6] when (A1.size() < 5)
{ insert() }

For very small tools, using cell references is sufficiently
clear. However, as tools grow in complexity, naming
cells considerably aids readability and sharability.

Through these event mechanisms, users can
achieve rich control flow in their programs. A spread-
sheet cell can contain a button that, when pressed, trig-
gers code to connect to a server and perform some
action. Regularly polling a remote system can be
implemented using a timer object that fires at speci-
fied intervals, with polling code triggered by the timer.
Any object that uses the A1 plug-in API can also push

external events into the spreadsheet, triggering reeval-
uation of formulas and execution of dependent code.

In addition to for loops, iteration is also supported
in A1 through aggregate calls and recursive condi-
tional constructs. For example, to reset a number of
servers in cells C1 through C5, one would use the cell
range notation (‘‘..’’) in the method call, e.g.,
‘‘(A1..C5).reset()’’. For conditionally bounded iteration,
A1’s event-based approach provides a simple solution
through self triggering when() constructs, e.g.:

when (B1 < 10) {B1 = B1 + 1}

Web Portal-Based Collaboration Support

To support collaboration among system adminis-
trators, A1 spreadsheets can be deployed as portlets in
a J2EE-based web portal server. In the web portal,
administrators can execute or customize tools
deployed by their colleagues from their web browsers.
The web portal approach greatly helps shared situa-
tional awareness, as different sysadmins can see the
same view of system status and controls.

All A1 spreadsheets are initially created in the
Java Swing-based client application, which can be
launched from within the web portal framework using
Java WebStart. For example, Figure 2 shows the tool
from Figure 1 running as a portlet. From the client
tool, users can either save the spreadsheet locally (for
their own use or further development), or to a server
repository (for web deployment and sharing with oth-
ers). Once in the server repository, spreadsheets may
be run in a browser, like any other portlet. When a
user wants to change a spreadsheet, they can launch
the Java Swing-based client tool again using the
‘‘Edit’’ button on the portlet. When the sheet is
updated, the user may either save the sheet locally,
replace the existing portlet, or save it to the portal
under another name. When a sheet is deployed to the
portal and running in a web browser, objects are ren-
dered and manipulated using the HTML form-based
interactors. In this environment, spreadsheets are ren-
dered to look no different than any other portlet appli-
cation. To accomplish this, portlet cells that contain
code are hidden from the user. Users can also explic-
itly hide other cells as appropriate.

Implementation Challenges

Implementing A1 involved several challenges,
including building the underlying execution engine,
and developing rendering and interaction techniques for
both Java application and a J2EE-based environments.

The execution engine for a traditional spread-
sheet relies on a dependency graph, recomputing each
value when there is a change to dependent cells. Side
effects are not permitted, and there are no guarantees
as to the number of times that a formula might re-exe-
cute when triggered. Since A1 models real-world sys-
tems, we must handle side effects properly and ensure

2005 LISA XIX – December 4-9, 2005 – San Diego, CA 5

A1: Spreadsheet-based Scripting for Developing Web Tools Haber, et al.

that code runs only when necessary. In addition, for-
mulas might include method calls to remote systems
that might not return results for an arbitrarily long
time. To support these requirements, we implemented
a custom multi-threaded execution engine.

Figure 2: The JVM monitor running as a web portlet.

One of the biggest challenges was the need to
support vastly different interaction models such as the
HTML form-based interaction and event-based
Java/Swing GUI interaction using a single language
and framework. In Swing applications, users can inter-
act with GUI widgets that immediately generate
events and cause objects to be rendered to reflect
changes. In the HTML form model, input elements are
contained in forms that are submitted and processed
by a web server.

The difference is that in the web model users can
make multiple changes on the form (such as entering
text into multiple text fields) and submit the all the
changes at once using a button on the form. This mini-
mizes server round trips. A1 handles these two differ-
ent models uniformly through the use of platform
independent interactors and through ‘‘batched event
propagation.’’ Batched event propagation registers the
current values of all ‘‘delayed’’ input elements (such
as text input elements) on a portlet. Upon interaction
with an element that causes a server request, all
delayed input elements are processed first, before pro-
cessing the element that initiated the request. Through
this approach, A1 accommodates HTML form-based
interaction much like the Swing GUI event model.

Sample A1 Tools

Simple System Monitor with SSH

This example demonstrates an A1 SSH object
connecting to and executing commands on a remote
server (Figure 3). The sample tool includes cells that
contain labels and text fields for server name, login
name, as well as a password field object used to avoid
storing passwords in the script, and to hide them as
users are entering passwords:

[B1] "j2.almaden.ibm.com"
[B2] "eben"
[B3] PasswordField()

The SSH object is created in cell B5, referring to
the values from the above cells:

[B5] SSH(B1,B2,B3.getText())

Once the connection is successfully established, it can
be used to execute commands and assign command
output to a spreadsheet cell. Consider the example of a
system where occasionally a problem causes the
HTTP server processes increase in number. The sysad-
min may want to occasionally check to see how many
of these processes are running using the ps command.
A button labeled ‘‘run’’ is placed in cell A6, with code
in B6 that uses the SSH execute() method to run the
command whenever the button is pushed, putting the
results in cell C6:

[A6] Button("run")

6 2005 LISA XIX – December 4-9, 2005 – San Diego, CA

Haber, et al. A1: Spreadsheet-based Scripting for Developing Web Tools

[B6] on (A6)
{C6 = B5.execute

("ps -ef | grep http")}

Figure 3: Creating an SSH connection.

Figure 5: Automating HTTP server restart.

Figure 6: Using a popup menu to list methods.

The example above can be extended to automatically
restart the HTTP server and send email notifications.
First, we replace the button with a clock object set to
fire every 10 minutes, triggering cell B6 which updates
cell C6 with the number of http processes. This, in
turn, triggers B7, which checks if this number is
greater than 100. If so, it executes a command to
restart the http daemon, putting any output in cell C7,
and notifies the user by email by manually triggering
the code in the cell named ‘‘notify’’ (a.k.a. B8).

[A6] Clock(10*60*1000)
[B7] when (C6 > 100)

{C7= B5.execute
("/etc/init.d/httpd restart");

notify()}
[A8] MailService

("j2.almaden.ibm.com")
[B8] notify: {A8.sendMail("root",

"eben","http server",
"server restarted"+c7)}

This example shows how A1 permits the user to
quickly create a web-deployable tool that displays and
controls the status of a remote system. This tool can be
easily shared with other system administrators, who
need only change the server, login, and password values
to run the script within their own server environment.

Graphical JVM Memory Monitor

Figures 1 and 2 show a tool that uses Java Man-
agement Extensions (JMX) to connect to several Web-
Sphere Application Servers (WAS) and display their
Java Virtual Machine (JVM) memory usage using a
pie chart. In this example, we show how to create that
tool in detail.

First, we create labels in column A, and
TextField objects in column B into which the user can
enter the WebSphere server name and JMX listener
port. The object name is visible when the user is typ-
ing. Once complete, the object is rendered, in this case
as a fully interactive text field (see Figure 6).

2005 LISA XIX – December 4-9, 2005 – San Diego, CA 7

A1: Spreadsheet-based Scripting for Developing Web Tools Haber, et al.

Next, in cell B3 we create an object that encap-
sulates a JMX connection to the WebSphere server:

[B3] WAS(B1,B2,"","")

The code creating the WAS object refers to the values
that the user types in to cells B1 and B2, and uses
empty values for login and password (as authentica-
tion for JMX is turned off). In JMX, servers can return
one or more MBeans, which contain a number of
attributes and methods. To retrieve an MBean from a
WAS JMX object, we will call the getResource()
method in B4, specifically asking for the JVM
MBean:

[B4] = B3.getResource("JVM")

If users can’t remember all methods available on an
object, it is possible to right-click on the object to pop-
up a method list (Figure 6). Once we have the JVM
MBean, we can get further information by using meth-
ods such as getTotalMemory() and getFreeMemory()
to get the memory statistics into cells B5 and B6,
respectively:

[B5] = B4.getTotalMemory()
[B6] = B4.getFreeMemory()

It turns out that the JVM MBean doesn’t have a
method for returning used memory, but that is easily
computed from the difference between total and free
using a regular spreadsheet expression in cell B7:

[B7] = B5 - B6

Now we have cells that show total, free, and used
memory. Because this particular API does not support
‘‘pushing’’ data from the server, we need to regularly
poll the server to keep the values up to date. This is
accomplished with a timer and code to trigger updates.
Cell A9 holds the Clock object,

[A9] Clock()

and cell B8 contains code that, whenever the clock
fires, ‘‘touches’’ cell B4, causing all dependent cells to
be reevaluated:

[B8] on (A9) { touch(B4) }

Note here that we used the ‘‘$’’ modifier in the cell
reference to make it an absolute cell address, thus
ensuring that when cell is copied to another location,
the expression will still refer to cell A9. This will make
it easier to duplicate the code for use with other
servers. Now the memory values are being updated at
regular intervals. The display can be improved, how-
ever, since textual number displays aren’t the best way
for displaying relative values such as used and free
memory. We now create a pie chart object in cell B11:

[B11] PieChart()

To populate the pie chart with values, we add code in
cell B9 to have a pie slice with a name from A6 (‘‘Free’’)
and value from B6:

[B9] on (B6) { B$11.set($A6, B6) }

Thus, whenever the value in B6 changes, the pie slice
is updated. In the reference to B$11, only one ‘‘$’’ is

used in the cell reference, making the row of the chart
invariant. This permits us copy/paste cell B9 to B10,
where it will create a pie slice for ‘‘Used’’ memory,
and then copy both cells to other columns for other
servers. The reference to $A6 makes the column
invariant, since the labels are only found in the first
column. We now have a complete memory monitor for
a single server. Expanding it to support more than one
machine is relatively easy. We just select cells B1
through B11, copy and paste them into columns C and
D. A1 supports standard spreadsheet cell expression
rewriting, so non-absolute cell references in formulas
are changed when pasted to refer to the new columns.

The working memory monitor is shown in Figure
1. The memory monitor can also be saved to a server
repository where it becomes immediately available as
a portlet tool. Figure 2 shows a snapshot of the portlet
tool as it appears running in a web browser.

Creating a Server Inventory Report

We have observed system administrators receiv-
ing management requests for inventory reports of all
servers owned by an organization. The requests came
from different people, and involved different groups of
servers. The requested information included OS type,
version, platform, hardware details (processor
type/speed, memory), storage utilization, network
interfaces, machine location, etc. The sites involved
had various versions of Windows, Unix, Linux, and
OS/2, so capturing the required information required a
variety of mechanisms, e.g., SSH, SNMP, manage-
ment tools, and databases. The system administrators
we observed collected such information manually,
entered into a spreadsheet, created necessary charts,
and sent the report to management. Given the nature
of this task, it seems ideal to use A1 to both retrieve
and organize the data.

Here, we show two examples of such data collec-
tion, one in Windows through SNMP and the other in
Linux through SSH. Each machine is listed on a sepa-
rate line, so system administrators can easily duplicate
it for as many servers as necessary through copy and
paste. From these examples, it should be clear how
other server and OS types and access methods could
be implemented.

First, we create a set of buttons to trigger updates
on system information (Figure 7). In cell A1, we put a
button to update all server information, and each line
corresponding to a server also has an individual button
to specifically update that server’s information.

[A1] Button()
[B4,B5,...] Button()

Cells C4, C5, and so on contain code to trigger that
row’s button whenever the master button in A1 is hit.
For example, C4 will contain:

[C4] on (A1) {touch(B4)}

For each machine, column A will be the machine
type/access method for the convenience of the

8 2005 LISA XIX – December 4-9, 2005 – San Diego, CA

Haber, et al. A1: Spreadsheet-based Scripting for Developing Web Tools

spreadsheet user copying and pasting rows (e.g., Win-
dows/SNMP, Linux/SSH), and Column D has
approach specific code to connect to remote server.
For SNMP and SSH the code is:

Figure 7: An inventory spreadsheet.

Figure 4: Running an SSH command triggered with a button.

[D4] on (B4)
{ E4 = SNMP(I4, "", "") }

[D5] on (B5)
{ E5 = SSH(I5, G5, H5.getText())}

Whenever the button is pressed, a connection object is
created, causing other values in the row to be updated.
Connection status is reported in the fifth column with
a simple method call:

[F4] = E4.testConnection()

The subsequent three columns include login/password
(if needed), and host name. The following columns
contain formulas that derive machine information from
the connection object. With SNMP, we get the machine
description, uptime, #network interfaces, and network
interface descriptions as shown below, respectively:

= E4.getResourceValue
("1.3.6.1.2.1.1.1.0")

= E4.getResourceValue
("1.3.6.1.2.1.1.3.0")

= E4.getResourceValue
("1.3.6.1.2.1.2.1.0")

= E4.getResourceValues
("1.3.6.1.2.1.2.2.1.2.*")

The same information can be retrieved from a Linux
machine via the following use of the SSH object:

= E5.execute("uname -osrv")
= E5.execute("uptime")
= E5.execute("netstat -i | wc -l") - 2
= E5.execute("netstat -i")

Other pieces of system information may be extracted in
a similar fashion, though some require more extensive
textual processing, either using shell commands
through SSH, or using one of the built-in string process-
ing functions provided by A1. Though at first it may
seem to be complex, once a row collecting information
for one machine is completed, it one can be copied and
pasted for all other machines of the same type.

Evaluation

A1 is currently an alpha release. We completed
one laboratory usability study and are currently con-
ducting field trials. Our laboratory study involved
twelve participants, seven professional sysadmins and
five programmers. Of the seven system administrators,
two had more than four years scripting experience, and
the remaining had zero to two years experience. One
goal was to determine whether A1 could be learned
and successfully used in a two-to-three hour period.

In the study, participants first reviewed a self-
paced tutorial of the A1 programming language and
user interface. Second, participants practiced using A1
by developing a simple tool following explicit step-
by-step instructions. The first two steps typically took
about 30 minutes each. Next, participants were asked
to develop two system administration tools, one based
on the other, given only descriptions of the tool
requirements. Finally, an interview was conducted
with participants to learn about their experiences.

The first tool to be created was a log-space-mon-
itoring and backup-automation script for an http
server. The tasks included querying the http server for
the name of its current log disk, using that name to
query the file system for log disk utilization, and reg-
istering listeners to monitor disk utilization. When the
log disk is nearly full, code must notify the system
administrator through email, and when the log fills
completely, it must stop the http server and start a disk
backup. The second tool extended the first one
through code to switch log disks automatically when
two log disks are available.

After taking the tutorial and building the sample
tool, the participants spent between one and two hours
working on the subsequent tools. Overall, they were
fairly successful, on average completing 80% of the
required functionality. Given the complexity of the
tools and the limited time to learn the language and
environment, these results are very encouraging.
Equally encouraging were positive comments by the

2005 LISA XIX – December 4-9, 2005 – San Diego, CA 9

A1: Spreadsheet-based Scripting for Developing Web Tools Haber, et al.

participants on the incremental and interpreted nature
of A1. One said, ‘‘It allows me to do things in my own
order. I can refer to a non-existing object. I know I’m
going to create the object next.’’ Another said, ‘‘The
fact that I can interact with my systems in real time in
the spreadsheet that alone is pretty cool.’’ Another
added that building tools this way was ‘‘the quickest
live application [I] ever made.’’

The results did highlight several areas for
improvement. Learning the object-oriented program-
ming model proved somewhat of a hurdle for the less
experienced participants. In addition, many partici-
pants had difficulty understanding the semantics of the
objects and methods used in the tools. These problems
suggest a need for improved introductory documenta-
tion to explain the programming model, and better
interactive browsing of object APIs to aid program-
mers in learning object and method semantics.

We are also conducting field trials with system
administrators, both inside and outside our company,
to see if they can develop tools that are useful in their
work settings. So far, A1 has been field-tested in three
different groups: web-hosting, server management,
and cluster management. The study primarily included
requirements gathering, use-case and template devel-
opment, first-hand experience by system administra-
tors in tool building, and data collection regarding
problems and issues with A1 user interface, language,
environment, and libraries. In these, A1 was used for
developing tools for recycling a steady-state server,
creating system inventory reports, and monitoring
cluster server performance.

Overall, the reaction to A1 was quite positive.
Users especially liked live connections to systems,
easy integration of data, and the web interface. One of
the users said: ‘‘. . . but this is like you have real time
technical data, and accurate.’’ Integration was a major
concern among users in their daily work. One user
said: ‘‘. . . this is the only tool that brings all this data
together.’’ Another referred to the difficulty of creating
web interfaces in one of their projects: ‘‘[to get a] web
front in front of it (the report) it took six months and it
still didn’t work right,’’ adding ‘‘[with A1] it was on
the fly, it is great!’’ Users also appreciated the fact that
A1 does not require installing agents on servers,
pulling data from systems. Issues concerning A1
including lack of support for running scripts as back-
ground jobs, need for more interactive scripting and
improved text processing utilities, and lack of suffi-
cient documentation and online help on object libraries.

Related Work

Scripting is pervasive in system administration,
primarily through command-line shells. System
administrators often open a number of shell consoles,
execute command-line instructions and automate tasks
through languages such as Perl, Python, and C Shell

[10]. System management tools are typically vendor-
specific-each vendor provides a management tool for
its own systems, such as IBM’s DB2 Control Center.
Tivoli and EMC, two leading providers of tools for
system administrators, have hundreds of tools for
enterprise-wide operations. To address the fact that
system management activities often span multiple
tools from multiple vendors, both Tivoli and EMC
have integrated environments. For instance, Tivoli’s
Enterprise Console provides comprehensive manage-
ment capabilities, including monitoring systems from
multiple vendors.

One limitation of these environments is that they
provide little support for customization. For example,
the systems typically offer standard, prepackaged
charting capabilities without a means for end users to
create their own system views. PIKT [13] and
Cfengine [3] are well known in the system administra-
tion community as domain-specific languages for
monitoring and configuration management of diverse
environments. Unfortunately, complexity of these lan-
guages and lack of supporting visual environments
make them suitable mainly for experts.

Related work on spreadsheets is extensive in
both the research and commercial realms. Spread-
sheets were one of the original ‘‘killer apps’’ that
prompted wide use of personal computers. While
effective for tabular calculations, traditional spread-
sheets lack expressibility and programming power [17,
4] and they are limited in their ability to interact with
external systems. Researchers have taken a variety of
approaches to these problems, investigating changes to
spreadsheet language, programming model, data
types, and user interface.

Of particular relevance is work on object-ori-
ented spreadsheets [2, 5, 9]. These approaches use
object models specific to their systems, and require
new languages for object definition. Our use of Java
has the advantage of a large base of existing users,
tools, and libraries, particularly for IT management. In
addition, the other approaches were purely functional
programming environments, whereas we think our
procedural code blocks provide a more natural means
of managing the side effects (such as restarting a sys-
tem) inherent in system administration.

Commercial spreadsheet systems (e.g., Microsoft
Excel) address limitations in programming power and
access to external systems by permitting users to write
programs in an external language (e.g., in Visual
Basic). This approach has several drawbacks. First,
data sources and processes are not explicitly repre-
sented in the spreadsheets as first-class cell contents
(unlike numbers, strings, etc.). Thus, interaction with
external processes is done through a language and pro-
gramming model (e.g., Visual Basic) different from
that used in the spreadsheet and typically requires dif-
ferent programming skills. Second, functionality

10 2005 LISA XIX – December 4-9, 2005 – San Diego, CA

Haber, et al. A1: Spreadsheet-based Scripting for Developing Web Tools

provided by external processes (e.g., operations
defined on servers, such as shutdown) may not be
exposed to the user in a form that can be used readily
in spreadsheet expressions. Finally, data are typically
pulled from external processes rather than actively
pushed by these processes (though in Visual Basic it is
possible to program this explicitly too). These issues
are all important for system administration.

A1 extends previous work through explicit repre-
sentation of external systems as objects in cells. These
objects expose their properties and methods to the user,
who can use them in functional expressions or procedur-
al code blocks to query and control systems. Unlike pre-
vious approaches, A1 carefully combines procedural and
functional constructs through an event-based approach
to achieve rich control structures for the system adminis-
tration domain. A1 takes the inherently event-based pro-
gramming of spreadsheets to the extreme, where each
cell can either explicitly or implicitly create, listen, com-
bine, and process events. Most importantly, A1’s exten-
sions are carefully crafted to create a model and lan-
guage that conforms to the spreadsheet metaphor while
remaining usable, and powerful.

Discussion and Future Work

A1 is a working prototype that aims to support
system administrator tool building. There remain open
questions as to how well it will work in the real world.
We are currently involved in field trials to answer spe-
cific questions:

• Is the A1 environment sufficiently easy to use
(and reuse) to permit a broader population of
system administrators to do their own script-
ing?

• Is the A1 environment sufficiently powerful
and usable to be useful for real system adminis-
tration tasks?

• Can A1 be learned quickly enough so that
administrators are willing to make the time
investment to learn it?

• How valuable is a web portal repository of
shared tools?

• Does A1 have any scaling limitations for real
world tasks?

• What set of access methods (SSH, SNMP,
JMX, etc.) is needed?

We hope to better understand how to make A1
successful in the real world through our field trials,
and through a public release of A1. There are several
areas in which we are already working to improve A1.
Error handling and debugging of scripts need
improvement, since our extensions to the program-
ming model can make dependencies harder to under-
stand. In addition, right now A1 has no mechanism for
logging spreadsheet events, a necessary feature when
using A1 to manage systems. We are also actively
seeking to develop more plug-ins for connecting to a
wider variety of systems through additional protocols.

Conclusion

We have developed a tool-building environment to
support system administrators in working collabora-
tively to create custom solutions for their site. It pro-
vides access to a wider audience by combining a spread-
sheet-style development environment with web portal
deployment. An early version has been made available
on the web, and we are actively testing and developing
it to make A1 a useful tool for system administrators.

Availability

A1 is scheduled to be available on IBM alpha-
Works in October 2005.

Acknowledgments

We thank the system administrators who partici-
pated in our field studies and in the preliminary study
of A1 for their time and their thoughtful suggestions.

Author Information

Eben Haber works on Human-Computer Interac-
tion at IBM Almaden Research Center. He holds a
Ph.D. from the University of Wisconsin-Madison,
where he worked on improving user interfaces for
database systems. His interests include databases, user
interfaces, and the visualization of structured informa-
tion. He has worked in industry on data mining and
visualization, user interface design, and is currently
studying human interaction with complex systems in
the USER group at IBM Almaden.

Eser Kandogan is a research staff member at
IBM Almaden Research Center. He holds a Ph.D.
from the University of Maryland, College Park, where
he studied computer science with a specialization on
Human-Computer Interaction. His current interests
include human interaction with complex systems, pol-
icy-based system management, ethnographic studies
of system administrators, information visualization,
and end-user programming.

Allen Cypher is a research staff member at IBM
Almaden Research Center. He received a Ph.D. in
Computer Science from Yale University. His research
interests are in end-user programming, and he has
worked in industry designing user interfaces, program-
ming environments and custom tools. Paul Maglio is
Senior Manager of Human Systems Research at the
IBM Almaden Research Center. In his nine years at
IBM Research, Paul has worked and published exten-
sively in the areas of human-computer interaction,
intelligent agents, web intermediaries, system manage-
ment, and autonomic computing. He has a Ph.D. in
cognitive science from UCSD, and an SB in computer
science and engineering from MIT.

Rob Barrett is a Research Staff Member at the
IBM Almaden Research Center in California where he
works in the Services Research group on bringing

2005 LISA XIX – December 4-9, 2005 – San Diego, CA 11

A1: Spreadsheet-based Scripting for Developing Web Tools Haber, et al.

value from human-computer interaction research to
the IBM Global Services organization. His current
work focuses on the user experience of system admin-
istration and human aspects of autonomic computing.
Previous work includes an intermediary approach to
designing web applications, optimization of pointing
devices, track-following servo systems for tape data
storage, and atomic-scale imaging. He holds a Ph.D.
in Applied Physics from Stanford University and has
earned masters and bachelors degrees in physics, elec-
trical engineering and theology.

References

[1] Barrett, R., E. Kandogan, P. P. Maglio, E. M.
Haber, L. A. Takayama, M. Prabaker, ‘‘Field
Studies of Computer System Administrators:
Analysis of System Management Tools and Prac-
tices,’’ Proc. CSCW, 2004.

[2] Burnett, M., J. Atwood, R. W. Djang, J. Reich-
wein, H. Gottfried, S. Yang, ‘‘Forms/3: A first-
order visual language to explore the boundaries
of the spreadsheet paradigm,’’ Journal of Func-
tional Programming, Vol. 11, Num. 2, pp.
155-206, March 2001.

[3] Burgess, M., ‘‘A Site Configuration Engine,’’
Computing Systems, Vol. 8, Num. 1, p. 309, MIT
Press, Cambridge, MA, Winter, 1995.

[4] Casimir, R., ‘‘Real Programmers Don’t Use
Spreadsheets,’’ ACM SIGPLAN Notices, 27, pp.
10-16, June, 1992.

[5] Clack, C., L. Braine, ‘‘Object-oriented functional
spread-sheets,’’ Proc. 10th Glasgow Workshop
on Functional Programming (GlaFP’97),
September, 1997.

[6] Couch, A., ‘‘An Expectant Chat About Script
Maturity,’’ Proceedings of LISA 2000, pp. 15-28,
2000.

[7] Gittler, X., K. Beer, ‘‘Designing a Configuration
Monitoring and Reporting Environment,’’ Pro-
ceedings of LISA ’03, pp. 61-72, 2003.

[8] Hagenmark, B., K. Zadeck, ‘‘Site: A Language
and System for Configuring Many Computers as
One Computer Site,’’ Proceedings of the Work-
shop on Large Installation Systems Administra-
tion III, p. 1, USENIX Association, Berkeley,
CA, 1989.

[9] Hudson, S., ‘‘User Interface Specification Using
an Enhanced Spreadsheet Model,’’ ACM Trans-
actions On Graphics, 209-239, July, 1994.

[10] Joy, William, An introduction to C Shell.

[11] Libes, D., ‘‘How to Avoid Learning Expect -or-
Automating Interactive Programs,’’ Proceedings
of LISA ’96, 1996.

[12] Myers, B. A., J. F. Pane, A. Ko, ‘‘Natural Pro-
gramming Languages and Environments,’’ Com-
munications of the ACM, Vol. 47, pp. 47-52,
September, 2004.

[13] Osterlund, R., ‘‘PIKT: Problem Informant/Killer
Tool,’’ Proceedings of LISA ’00, pp. 147-165,
2000.

[14] Pierce, C., ‘‘The Igor System Administration
Tool,’’ Proceedings of LISA ’96, 1996.

[15] Stepleton, T. ‘‘Work-Augmented Laziness with
the Los Task Request System,’’ Proceedings of
LISA ’02, pp. 1-12, 2002.

[16] Wack, A., Partitioning Dependency Graphs for
Concurrent Execution: A Parallel Spreadsheet
on a Realistically Modeled Message Passing
Environment, Ph.D. Thesis, Department of Com-
puter and Information Sciences, University of
Delaware, 1995.

[17] Yoder, A. G., D. L. Cohn, ‘‘Real spreadsheets for
real programmers,’’ Proc. ICCL ’94, IEEE Press,
pp. 20-30, 1994.

12 2005 LISA XIX – December 4-9, 2005 – San Diego, CA

